

Assessment schedule – 2023

Chemistry: Demonstrate understanding of aspects of carbon chemistry (90932)

Evidence Statement

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	1a	2a	3a	4a	2m	3m	1e + 1m	2e

Q	Evidence	Achievement	Merit	Excellence						
TWO (a)(i)	<table border="1" data-bbox="193 231 1012 350"> <tr> <td data-bbox="193 231 395 271">Process 1</td><td data-bbox="395 231 1012 271">Fractional distillation</td></tr> <tr> <td data-bbox="193 271 395 311">Process 2</td><td data-bbox="395 271 1012 311">Cracking</td></tr> <tr> <td data-bbox="193 311 395 350">Process 3</td><td data-bbox="395 311 1012 350">Polymerisation / addition</td></tr> </table>	Process 1	Fractional distillation	Process 2	Cracking	Process 3	Polymerisation / addition	<ul style="list-style-type: none"> TWO out of 3 processes. 	<ul style="list-style-type: none"> TWO out of 3 processes correct. AND Polymer drawn correctly 	
Process 1	Fractional distillation									
Process 2	Cracking									
Process 3	Polymerisation / addition									
(ii)	<p>Polypropene (polypropylene)</p> <div style="display: flex; align-items: center; justify-content: center;"> <div style="border: 1px solid black; padding: 5px; margin-right: 20px;"> $\begin{array}{c} \text{H} & \text{H} & \text{H} & \text{H} \\ & & & \\ -\text{C} & -\text{C} & -\text{C} & -\text{C}- \\ & & & \\ \text{H} & \text{CH}_3 & \text{H} & \text{CH}_3 \end{array}$ </div> </div>									
(iii)	<p>Both propene and propane are hydrocarbons containing covalently bonded C atoms. Both undergo complete combustion in excess oxygen, where the covalent bonds between the carbon atoms and carbon and hydrogen atoms are broken, forming carbon dioxide and water.</p> <p>Propane is an alkane containing only single (covalent) bonds whereas propene contains a double bond. The single bonds are stable, so propane does not react to form the long chains of a polymer.</p> <p>Propene is an alkene containing a double (covalent) bond, which acts as a functional group / is reactive / is easily broken, allowing propene to act as a monomer.</p> <p>In high temperatures and high pressures, with a catalyst, the double bond breaks in the propene molecules, allowing the different molecules to join together with single covalent bonds, forming a long chain called a polymer / polypropene.</p>	<ul style="list-style-type: none"> Identifies single bonds in propane OR double bonds in propene. Correct conditions for either reaction type. 	<ul style="list-style-type: none"> Explains that covalent bonds between carbon atoms are broken during combustion. OR Both propene and propane can undergo combustion reaction with excess oxygen Explains why propane cannot form polymers. OR Explains why propene can form polymers. 	<ul style="list-style-type: none"> Fully explains the reactions of propane and propene including conditions needed. 						

(b)	<p>polyethene section</p> $ \begin{array}{cccc} \text{H} & \text{H} & \text{H} & \text{H} \\ & & & \\ -\text{C} & -\text{C} & -\text{C} & -\text{C}- \\ & & & \\ \text{H} & \text{H} & \text{H} & \text{H} \end{array} $ <p>Chemical structure and bonding: They are both made up of long chains of carbon atoms bonded together with single covalent bonds. Both polymers are lightweight / insoluble allowing them to float in the ocean and be washed ashore. Since neither has a functional group / only have single covalent bonds, they are both unreactive which means they will not break down in water / dissolve (or air) so do not biodegrade, causing pollution.</p>	<ul style="list-style-type: none"> • Correct. • Describes the chemical structure / bonding of ONE polymer. OR Identifies that neither polymer has a functional group. • Long time to break down / doesn't dissolve. 	<ul style="list-style-type: none"> • Explains why the polymers are non-biodegradable / unreactive / do not naturally break down. OR Genuine link between property and effect. 	<ul style="list-style-type: none"> • Fully explains why the structure and physical and chemical properties of polymers cause pollution in the ocean / beach environment.
-----	--	--	--	---

N _O	N ₁	N ₂	A ₃	A ₄	M ₅	M ₆	E ₇	E ₈
No response; no relevant evidence.	1a	2a	3a	4a	2m	3m	1e + 1m	2e with minor error

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	1a	2a	3a	4a	2m	3m	2e	3e

Cut Scores

Not Achieved	Achievement	Achievement with Merit	Achievement with Excellence
0 – 6	7 – 13	14 – 19	20 – 24