💥 No Brain Too Small 💥

The area under a speed/time graph is	Time is measured in	V = (formula)	Acceleration is measured in
distance	seconds, s	∆ d/ ∆†	ms ⁻²
Velocity is measured in	The gradient of a distance/time graph is	Gradient = (how to calculate on a graph)	Negative acceleration is also called
ms ⁻¹	speed	Rise / run	deceleration
The gradient on a speed/time graph is	Forces are measured in	If an object is moving at constant speed the forces are	If an object is accelerating forces must be
acceleration	newtons, N	balanced	unbalanced
Mass is measured in	The downward acting force is called	The force that makes a boat float	The force which slows objects down is
kilograms, kg	weight / weight force	upthrust	Friction force

The force which makes an object move forwards is	Gravity on Earth is equal to	Work is measured in	Work is (definition)
Thrust	10 ms ⁻²	joules, J	done when a force moves an object
Work, W = (formula)	Energy is (definition)	A moving object has (energy)	The energy an object gains when lifted is
F . d	The capacity to do work	kinetic	gravitational potential
E _K a falling object has just before it hits the ground, is the same as its before it was dropped	E _K = (formula)	ΔE _P = (formula)	If the speed doubles the kinetic energy
E _P	1/2 m v ²	m g ∆h	increases by 4x
As speed increases stopping distance 	Energy is never lost or gained only	The unit of power is	Power = (formula)
increases	transferred or transformed	watt, W or Js ⁻¹	W/t or

If the force remains the same but the area increases, pressure	If the force remains the same but the area decreases, pressure	If the force increases but the area remains the same, pressure	If the force decreases but the area remains the same, pressure
decreases	increases	increases	decreases
Snow shoes and skis "work" because the force is spread over a area	A needle will exert enormous because surface area (A) of the point where force (F) is applied is very small.	Drawing pins "work" because force is spread over a area	Camels feet have a large area so they
large / greater	pressure	small / smaller	exert less pressure & don't sink in the sand
Pressure (definition)	At velocity the weight force down equals the air resistance force up	1 Nm ⁻² is the same pressure as 1	On a distance- time graph, a horizontal line means
how much force object exerts over an area	terminal	pascal, Pa	stationary or stopped
Why don't Elephingo or Flamphants exist?	On a distance- time graph, this curve means	On a distance- time graph, this curve means	On a speed - time graph, a horizontal line means
pressure!!!	acceleration	deceleration	constant speed

