💥 No Brain Too Small 💥 | The area under a speed/time graph is | Time is measured
in | V =
(formula) | Acceleration is measured in | |---------------------------------------|---|--|---| | distance | seconds, s | ∆ d/ ∆† | ms ⁻² | | Velocity is
measured in | The gradient of a distance/time graph is | Gradient =
(how to calculate
on a graph) | Negative
acceleration is
also called | | ms ⁻¹ | speed | Rise / run | deceleration | | The gradient on a speed/time graph is | Forces are
measured in | If an object is
moving at constant
speed the forces
are | If an object is
accelerating
forces must be | | acceleration | newtons, N | balanced | unbalanced | | Mass is measured
in | The downward
acting force is
called | The force that
makes a boat
float | The force which slows objects down is | | kilograms, kg | weight / weight
force | upthrust | Friction force | | The force which makes an object move forwards is | Gravity on Earth
is equal to | Work is measured
in | Work is
(definition) | |--|---|------------------------------------|---| | Thrust | 10 ms ⁻² | joules, J | done when a
force moves an
object | | Work, W =
(formula) | Energy is
(definition) | A moving object
has
(energy) | The energy an
object gains when
lifted is | | F . d | The capacity to do work | kinetic | gravitational
potential | | E _K a falling object has just before it hits the ground, is the same as its before it was dropped | E _K =
(formula) | ΔE _P =
(formula) | If the speed
doubles the
kinetic energy | | E _P | 1/2 m v ² | m g ∆h | increases by 4x | | As speed
increases
stopping distance
 | Energy is never
lost
or gained only | The unit of power is | Power =
(formula) | | increases | transferred or transformed | watt, W or Js ⁻¹ | W/t or | | If the force remains the same but the area increases, pressure | If the force remains the same but the area decreases, pressure | If the force increases but the area remains the same, pressure | If the force
decreases but the
area remains the
same, pressure | |--|--|--|---| | decreases | increases | increases | decreases | | Snow shoes and skis "work" because the force is spread over a area | A needle will exert enormous because surface area (A) of the point where force (F) is applied is very small. | Drawing pins "work" because force is spread over a area | Camels feet have a large area so they | | large / greater | pressure | small / smaller | exert less
pressure & don't
sink in the sand | | Pressure
(definition) | At velocity the weight force down equals the air resistance force up | 1 Nm ⁻² is the same pressure as 1 | On a distance-
time graph, a
horizontal line
means | | how much force
object exerts
over an area | terminal | pascal, Pa | stationary or
stopped | | Why don't Elephingo or Flamphants exist? | On a distance-
time graph, this
curve means | On a distance-
time graph, this
curve means | On a speed - time
graph, a horizontal
line means | | pressure!!! | acceleration | deceleration | constant speed |