## <u>Inductance</u>



| Definitions                                                                                                                                            | <b>Equations</b>                                                                                                                                                                                                                                                                                         | Questions                                                                                                                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Magnetic fields                                                                                                                                        |                                                                                                                                                                                                                                                                                                          | QUESTION TWO (2019;2)                                                                                                                                                                                                            |
| Magnetic fields can be described in terms of magnetic flux, ${\cal O}$ (Wb), and magnetic field strength, B (T).                                       | $\phi = BA$ Magnetic Flux $\Phi$ Wb Magnetic Field Strength B T Area A m <sup>2</sup>                                                                                                                                                                                                                    | are wire coils embedded into the surface of the road and are powered by<br>an AC supply of known voltage and frequency.                                                                                                          |
| Electromagnetic induction<br>When 2 of Movement, Magnetic<br>Field and Current exist at an angle<br>to each other (90° is the ontimum                  | $\varepsilon = -L \frac{\Delta I}{\Delta t} \qquad \begin{array}{c} \text{EMF} & \varepsilon & \text{V} \\ \text{Inductance} & \text{L} & \text{H} \\ \hline \text{Current} & \text{I} & \text{A} \\ \hline \text{Time} & \text{t} & \text{s} \\ \hline \text{EMF} & \varepsilon & \text{V} \end{array}$ | detrois<br>detrois<br>vie faab                                                                                                                                                                                                   |
| angle) the third is induced:                                                                                                                           | $\mathcal{E} = -\frac{\Delta t}{\Delta t} \qquad \begin{array}{c c} \text{Magnetic Flux} & \Phi & \text{Wb} \\ \hline \text{Time} & t & \text{s} \end{array}$                                                                                                                                            | One particular inductive loop has 4.00 $\Omega$ of resistance and is powered by a 24.0 V <sub>RMS</sub> AC power supply. The loop is a 1.60 m × 0.600 m rectangular shape, with three coils of wire.                             |
| Inductance, L, is the ability of an inductor to store energy and it does this in the magnetic field that is created by the flow of electrical current. |                                                                                                                                                                                                                                                                                                          | <ul> <li>(a) The strength of the magnetic field inside the loop is 0.0413 T.<br/>Calculate the maximum magnetic flux in each of the three coils of<br/>wire of the inductive loop.</li> </ul>                                    |
|                                                                                                                                                        |                                                                                                                                                                                                                                                                                                          | When a car drives over the inductive loop, the steel in the car's body and<br>engine interacts with the magnetic field of the inductive loop. The overall<br>effect of this interaction is to reduce the inductance of the loop. |
|                                                                                                                                                        |                                                                                                                                                                                                                                                                                                          | (b) Explain the effect decreased inductance would have on current in the circuit.                                                                                                                                                |
| Terms                                                                                                                                                  | <u>Tips</u>                                                                                                                                                                                                                                                                                              | Answers                                                                                                                                                                                                                          |
| Magnetic field: Region where ferromagnetic materials (iron, cobalt, nickel)                                                                            | •                                                                                                                                                                                                                                                                                                        | <ul> <li>(a) Area = 1.60 m x 0.600 m = 0.960 m<sup>2</sup></li> <li>Max magnetic flux = B x A = 0.0413 T x 0.960 m<sup>2</sup> = 0.0396 Wb</li> </ul>                                                                            |
| Magnetic flux: Magnetic field strength multiplied by area.<br>Magnetic flux density: Amount of flux density in a fixed area                            |                                                                                                                                                                                                                                                                                                          | (b) Reducing the inductance of the inductive loop would reduce the reactance of the circuit. The resistance remains unchanged, thus the overall impedance would be reduced, and so current would rise.                           |