Projectile Motion

Definitions	Equations To solve: $Vsin \theta$	Questions Projectile Motion (2016;2)
Projectile motion Involves going up and down (vertically) and moving horizontally at the same time.	Vertically $\mathbf{v} = \mathbf{v} \sin \theta$	During a cricket game, a batsman hits the ball at an angle of 40.0° with the ground at a velocity of 20.0 m s ⁻¹ , as shown below.
$\frac{1}{\sqrt{1+ \mathbf{x} ^2}}$ Whilst in the air, the object is called a projectile . The initial (starting) velocity can be separated into two components at 90° to each other – horizontal and vertical. $\frac{\sqrt{\sin\theta}}{\sqrt{\sqrt{\cos\theta}}}$	Horizontally, $\mathbf{v} = \mathbf{v} \cos \theta$ Once these have been calculated, do the following: Vertically, use this kinematic equation: $\boxed{v_{\mathrm{f}} = v_{\mathrm{i}} + at} \qquad \frac{\frac{\mathrm{final velocity} \mathrm{v_{f}} \mathrm{m s^{-1}}}{\frac{\mathrm{initial velocity}}{\mathrm{acceleration} \mathrm{a} \mathrm{m s^{-2}}}{\frac{\mathrm{time}}{\mathrm{time} \mathrm{t} \mathrm{s}}}$ where \mathbf{v}_{i} = vertical component, $\mathbf{v}_{\mathrm{f}} = 0$ and $\mathbf{a} = -9.8$ since the weight force creates a downward acceleration to find t (the time until the projectile has reached the top of its flight). Time of flight = 2 x t Horizontally, use this kinematic equation: $\boxed{d = v_{\mathrm{i}}t + \frac{1}{2}at^{2}} \qquad \frac{\mathrm{displacement} \mathrm{d} \mathrm{m}}{\frac{\mathrm{initial velocity} v_{\mathrm{i}} \mathrm{m s^{-1}}}{\mathrm{acceleration} \mathrm{a} \mathrm{m s^{-2}}}}{\mathrm{time} \mathrm{t} \mathrm{s}}$ where \mathbf{v}_{i} = horizontal component, $\mathbf{a} = 0$ (as there are no forces acting horizontally) and t = time of flight to find d. (d =Range)	 (a) Show that the initial vertical component of the ball's velocity is 12.9 m s⁻¹. (b) Calculate the time it takes the ball to reach its maximum height. (c) Calculate the horizontal distance travelled by the ball before it hits the ground. (d) Give a comprehensive explanation of the effect of the force(s) acting on the ball during its flight. Assume air resistance is negligible. In your answer, you should: Describe the horizontal motion. Discuss the effect of force(s) on horizontal motion. Discuss the effect of force(s) on vertical motion.
Terms Kinematic equations of motion: Set of formulas used to describe motion mathematically. Projectile: An object thrown into space either horizontally or at an angle and moves under the action of gravity. Range: The horizontal distance traveled by a projectile. Top of flight/Maximum height: The point where the projectile has reached its maximum height and (momentarily) has stopped in a vertical direction. Time of flight: The time taken by a projectile from the moment it is thrown until it touches the ground.	Tips • To solve projectile motion, you need trigonometry (your calculator should be in degrees mode)	$\label{eq:second} \begin{array}{ c c c } \hline & \underline{Answers} \\ \hline (a) & v_v = 20 \times \sin 40^\circ = 12.856 = 12.9 \mbox{ m} \mbox{ s}^{-1} \mbox{ ("show that" question)} \\ \hline (b) & v_t = v_t + at \mbox{ so } 0 = 12.9 + -9.8 \times t \\ & t = 1.32 \mbox{ s} \\ \hline (c) & time \mbox{ of flight} = 2t = 2 \times 1.32 = 2.64 \mbox{ s} \\ & v_H = 20 \times \cos 40^\circ = 15.32 = 15.3 \mbox{ m} \mbox{ s}^{-1} \\ & d_H = v_H \mbox{ x time of flight} = 15.3 \mbox{ x} \mbox{ 2.64} = 40.4 \mbox{ m} \\ \hline (d) & Horizontal velocity remains constant, as there are no external forces in the horizontal direction, air resistance is negligible. \\ & Going \mbox{ up, vertical velocity decreases/ball decelerates as the weight force/gravity acts downwards/in an opposite direction to the motion Coming downwards, the vertical velocity increases/ball accelerates as the weight force/gravity is acting downwards/in the same direction as the motion. \\ \hline \end{array}$