Displacement is the change in the position of an object in a particular

direction. Displacement may also be defined as the shortest distance

between the initial and final position of a moving body.

LINEAR MOTION

Definitions

Equations

calculator.

There are a set of kinematic formulas used to describe motion mathematically.

					1 1		٦ I		
 Velocity is the distance travelled by a body in a particular direction or displacement per unit time. Velocity can be positive or negative. Acceleration is the rate of change of velocity of a moving object. This change in velocity can result from a change in speed, a change in direction, or a combination of changes in speed and direction. 				final velocity initial velocity	V _f V _i	m s ⁻¹ m s ⁻¹	-	(a) Show their velocity after 0.60	
		$v_{\rm f} = v_{\rm i} + d$		acceleration	a	m s⁻²		(b) While travelling at 50 km h^{-1} ,	
				time	t	s		She must reduce her speed fr	
			1	displacement	d	m		damaging the car. If the time	
				2 initial velocity	Vi	m s ⁻¹		to 20 km h ⁻¹ is 2.3 seconds, sh	
			$a = v_i t + \frac{1}{2}at$	acceleration	а	m s ⁻²	1	enough time to complete bra	
	a] D		2	time	t	s		You should start by showing i	
Displacement-time graph	7- c B			displacement	d	m		Motion (2013:1)	
A norizontal line shows a constant displacement (i.e., at rest). Gradient = velocity Velocity-time graph A borizontal line shows a constant	Department ⁶ in km 4- 3- 2- 11		$d = \frac{v_i + v_f}{2}t$	initial velocity	Vi	m s ⁻¹		Jason spends a day at an amusemo	
				final velocity	Vf	m s ⁻¹			
				time	t	S			
	0 5 10 15 20 25 30 35 40 45			final velocity	Vf	m s ⁻¹		(c) Jason goes for a ride on a go-	
	Time in seconds		$v_{\rm f}^2 = v_{\rm i}^2 + 2ad$	initial velocity	Vi	m s ⁻¹		decelerates at 2.5 m s ⁻² and c calculating Jason's initial velo	
				acceleration	а	m s ⁻²			
velocity	15-			displacement	d	m		while coming to a stop.	
The area under a velocity-time graph represents the distance travelled.	5 0 0 1 2 3 4 5 6 7 6 9 Time in seconds (s)	You will be given 3 variables and asked to work out a fourth variable. Choose the equation that only has these four (or the equation without the fifth variable).							
Terms		Tips						Answers	
Kinematic equations of motion: Set of formulas used to describe motion mathematically.		I suggest avoiding using:						(a) You are not given d so use the	
Specific words that they may use in the examinations: "From rest/Dropped": $v_i = 0$			Δd	(Average) velocity	v	ms	-1	$v_f = v_i + at so v_f = 0 + (4.2 \times 0.2)$	
			$v = \frac{\Delta u}{\Delta t}$ d	displacement	d	m		 (b) 50 km h⁻¹ is 50/3.6 = 13.89 m Distance travelled in 2.3 s car d = (v₁+ v_f) t /2 = (13.89 +5.56) 	
				time	t	s			
"Falling": a = + 9.8 ms ⁻²			Δv	(Average) acceleration	а	m s	-2		
			$a = \frac{1}{\Delta t}$	velocity	v	ms	-1		
			<i>∆u</i> t	time	t	S		m so cannot slowdown in tim	
	 Work in SI units so always convert km, cm and mm into m. Work in SI units so always convert hours and minutes into seconds. Watch out for negative values when putting the numbers into your 					s. Ir	(c) $v_f = v_i + at so 0 = v_i - 2.5 \times 4.2$ $d = v_i t + \frac{y_2}{2} t^2$ $d = (10.5 \times 4.2) - (\frac{y_2}{2} \times 2.5 \times 4.2)$ d = 22.05 m		

Questions

IN TOWN (2020;1)

Alex and Jo have decided to take a road trip. They start from rest on a straight road and accelerate at 4.2 m s⁻².

- seconds is 2.5 m s⁻¹.
- Jo sees a pothole in the road 15 m ahead. rom 50 km h⁻¹ to 20 km h⁻¹ to avoid needed for safe braking from 50 km h⁻¹ now by calculation whether there is aking before reaching the pothole. that 50 km h⁻¹ = 13.89 m s⁻¹.

ent park.

-kart. Towards the end of the ride, he comes to a stop in 4.2 seconds. By ocity, determine the distance he travels

- e equation without d .6) = 2.5 m s^{-1} (it's a "show that" question)
- s^{-1} and 20 km h^{-1} is 20/3.6 = 5.56 m s^{-1} . n be calculated by: 5) x 2.3 / 2 = 22.4 m. This is more than 15 ne.
- so $v_i = 10.5 \text{ m s}^{-1}$ (you do not know d) then .2²) d = 22.05 m