LINEAR MOTION

Definitions

Displacement is the change in the position of an object in a particular direction. Displacement may also be defined as the shortest distance between the initial and final position of a moving body.

Velocity is the distance travelled by a body in a particular direction or displacement per unit time. Velocity can be positive or negative.

Acceleration is the rate of change of velocity of a moving object. This change in velocity can result from a change in speed, a change in direction, or a combination of changes in speed and direction

Displacement-time graph

A horizontal line shows a constant displacement (i.e., at rest).
Gradient = velocity

Velocity-time graph

A horizontal line shows a constan velocity.
Gradient = acceleration The area under a velocity-time graph represents the distance travelled.
in socondst tol

Terms

Kinematic equations of motion: Set of formulas used to describe motion mathematically.
Specific words that they may use in the examinations:
"From rest/Dropped": $\mathrm{v}_{\mathrm{i}}=0$
"Falling": a = + $9.8 \mathrm{~ms}^{-2}$
"Thrown upwards": $\mathrm{a}=-9.8 \mathrm{~ms}^{-2}$

Equations

There are a set of kinematic formulas used to describe motion mathematically.

$v_{\mathrm{f}}=v_{\mathrm{i}}+a t$	final velocity	v_{f}	$\mathrm{m} \mathrm{s}^{-1}$
	initial velocity	v_{i}	$\mathrm{m} \mathrm{s}^{-1}$
	acceleration	a	$\mathrm{m} \mathrm{s}^{-2}$
	time	t	s
$d=v_{\mathrm{i}} t+\frac{1}{2} a t^{2}$	displacement	d	m
	initial velocity	v_{i}	$\mathrm{m} \mathrm{s}^{-1}$
	acceleration	a	$\mathrm{m} \mathrm{s}^{-2}$
	time	t	s
$d=\frac{v_{\mathrm{i}}+v_{\mathrm{f}}}{2} t$	displacement	d	m^{2}
	initial velocity	v_{i}	$\mathrm{m} \mathrm{s}^{-1}$
	final velocity	v_{f}	$\mathrm{m} \mathrm{s}^{-1}$
	time	t	s
$=v_{\mathrm{i}}^{2}+2 a d$	final velocity	v_{f}	$\mathrm{m} \mathrm{s}^{-1}$
	initial velocity	v_{i}	$\mathrm{m} \mathrm{s}^{-1}$
	acceleration	a	$\mathrm{m} \mathrm{s}^{-2}$
	displacement	d	m^{2}

You will be given 3 variables and asked to work out a fourth variable. Choose the equation that only has these four (or the equation without the fifth variable).

Tips

- I suggest avoiding using:

$v=\frac{\Delta d}{\Delta t}$	(Average) velocity	v	$\mathrm{m} \mathrm{s}^{-1}$
	displacement	d	m
	time	t	s
$a=\frac{\Delta v}{\Delta t}$	(Average) acceleration	a	$\mathrm{m} \mathrm{s}^{-2}$
	velocity	v	$\mathrm{m} \mathrm{s}^{-1}$
	time	t	s

- Work in SI units so always convert km, cm and mm into m .
- Work in SI units so always convert hours and minutes into seconds.
- Watch out for negative values when putting the numbers into your calculator.

Questions

N TOWN (2020;1)

Alex and Jo have decided to take a road trip. They start from rest on a straight road and accelerate at $4.2 \mathrm{~m} \mathrm{~s}^{-2}$.
(a) Show their velocity after 0.60 seconds is $2.5 \mathrm{~m} \mathrm{~s}^{-1}$.
(b) While travelling at $50 \mathrm{~km} \mathrm{~h}^{-1}$, Jo sees a pothole in the road 15 m ahead. She must reduce her speed from $50 \mathrm{~km} \mathrm{~h}^{-1}$ to $20 \mathrm{~km} \mathrm{~h}^{-1}$ to avoid damaging the car. If the time needed for safe braking from $50 \mathrm{~km} \mathrm{~h}^{-1}$ to $20 \mathrm{~km} \mathrm{~h}^{-1}$ is 2.3 seconds, show by calculation whether there is enough time to complete braking before reaching the pothole. You should start by showing that $50 \mathrm{~km} \mathrm{~h}^{-1}=13.89 \mathrm{~m} \mathrm{~s}^{-1}$.

Motion (2013;1)

Jason spends a day at an amusement park
(c) Jason goes for a ride on a go-kart. Towards the end of the ride, he decelerates at $2.5 \mathrm{~m} \mathrm{~s}^{-2}$ and comes to a stop in 4.2 seconds. By calculating Jason's initial velocity, determine the distance he travel while coming to a stop.

Answers

(a) You are not given d so use the equation without d $\mathrm{v}_{\mathrm{f}}=\mathrm{v}_{\mathrm{i}}+$ at so $\mathrm{v}_{\mathrm{f}}=0+(4.2 \times 0.6)=2.5 \mathrm{~m} \mathrm{~s}^{-1}$ (it's a "show that" question)
(b) $50 \mathrm{~km} \mathrm{~h}^{-1}$ is $50 / 3.6=13.89 \mathrm{~m} \mathrm{~s}^{-1}$ and $20 \mathrm{~km} \mathrm{~h}^{-1}$ is $20 / 3.6=5.56 \mathrm{~m} \mathrm{~s}^{-1}$. Distance travelled in 2.3 s can be calculated by:
$\mathrm{d}=\left(\mathrm{v}_{\mathrm{i}}+\mathrm{v}_{\mathrm{f}}\right) \mathrm{t} / 2=(13.89+5.56) \times 2.3 / 2=22.4 \mathrm{~m}$. This is more than 15 m so cannot slowdown in time
(c) $\mathrm{v}_{\mathrm{f}}=\mathrm{v}_{\mathrm{i}}$ +at so $0=\mathrm{v}_{\mathrm{i}}-2.5 \times 4.2$ so $\mathrm{v}_{\mathrm{i}}=10.5 \mathrm{~m} \mathrm{~s}^{-1}$ (you do not know d) then $d=v_{i} t+1 / 2 a t^{2}$
$d=(10.5 \times 4.2)-\left(1 / 2 \times 2.5 \times 4.2^{2}\right)$
$d=22.05 \mathrm{~m}$

