Mechanics Level 2 Equation Test

The formulae listed in the explanatory notes to the achievement standard will be provided, plus any other required formulae $\left(\mathrm{g}=9.8 \mathrm{~ms}^{-2}\left(\mathrm{Nkg}^{-1}\right)\right)$.

1. A 5 kg mass hangs from a spring extending the spring by 0.50 m . What is the spring constant of the spring?
2. If a rifle of mass 7 kg fires a bullet of mass 8 g at a speed $210 \mathrm{~m} \mathrm{~s}^{-1}$, what is the rifle's initial recoil velocity?
3. A train of mass 5000 kg moves at a speed of $30 \mathrm{~ms}^{-1}$ on a horizontal surface. Calculate the kinetic energy of the train.
4. A resultant force of 4 N is applied to a body of mass 2 kg for 1 second. What is the acceleration of the body?
5. An airplane has a maximum acceleration on the ground of $3.4 \mathrm{~ms}^{-2}$. What is the minimum length of runway needed if it is to reach its take-off speed of $110 \mathrm{~ms}^{-1}$?
6. A 4 kg mass travels at $5 \mathrm{~ms}^{-1}$ to the right. It collides with a 3 kg mass travelling at $6 \mathrm{~ms}^{-1}$ to the left. After the collision, the 3 kg mass moves off to the right at $2 \mathrm{~ms}^{-1}$. Use the law of conservation of momentum to work out the final speed of the 4 kg mass.
7. A student whirls a stone around on the end of a string in a horizontal circle. The stone rotates round at 10 times each second. What is the time period of the stone's rotation?
8. An arrow, in being fired from a bow, is accelerated over a distance of 0.40 m and leaves the bow with a velocity of $40 \mathrm{~ms}^{-1}$. What is the acceleration of the arrow while being fired?
9. A bullet is fired horizontally from a gun held 1.4 m above the ground on the Canterbury plains. If the bullet leaves the gun with a velocity of $300 \mathrm{~ms}^{-1}$ at what distance from the gun will the bullet strike the ground?
10. A stone of mass 0.20 kg on the end of a piece of string is whirled in a horizontal circle of radius 1.0 m with a constant speed of $2.4 \mathrm{~ms}^{-1}$. What is the tension in the string?
11. A train travelling at $10 \mathrm{~ms}^{-1}$ increases its speed uniformly to $25 \mathrm{~ms}^{-1}$ in 3 s . Find its acceleration.
12. A diving bell is lowered into the sea at a speed of $6 \mathrm{~ms}^{-1}$ and comes to rest with uniform retardation at a distance of 20 m below the surface. Calculate the time it takes to come to rest.
13. A ball is thrown upwards with an initial velocity of $30 \mathrm{~ms}^{-1}$. Find the time taken for the ball to return to its starting point (take $\mathrm{g}=10 \mathrm{~ms}^{-2}$)
14. A heavy rubber ball of mass 0.2 kg , initially at rest, falls vertically through a height of 3.2 m on to a flat, heavy, steel plate. Assuming negligible air resistance, calculate the speed of the ball just before impact.
15. When a bullet with mass 0.015 kg travelling at $650 \mathrm{~ms}^{-1}$ passes clean through a wooden block of mass 1.2 kg , initially at rest, the block moves off at $4 \mathrm{~ms}^{-1}$ immediately after the bullet has passed through it. What is the bullet's final speed?
