Level 2 Physics ELECTRICITY AND MAGNETISM

Physics 2.6 Demonstrate understanding of electricity and electromagnetism

Electric fields
Students should be able to
lacksquare Understand the simple model of the atom
Understand concepts of charge and neutrality
Understand the concept of charge-carrier (free electrons, ions, electron holes) in metals and electrolytes
Know that if there is a difference in charge between two points an electric field exists.
igsquirt Know that an electric field has both magnitude and direction.
\Box Know that the magnitude of the electric field is found by E = V/d
\Box Know that the unit is V/m or Vm ⁻¹
Use the equation E = F/q to demonstrate that a charge will move in an electric field.
Understand that a charged object can have potential energy by virtue of its position in an electric field.
\Box Use the equation $E_p = Eqd$
Understand that the concept of electric potential energy per unit charge is called electric potential.
\Box Use the equation V = E _p /q
Know the unit for electric potential.
\square Know that electric potential is often called voltage.
\square Know that 1 volt = 1 joule /1 coulomb
EMF, current, potential difference
Students should be able to:
Know some devices that provide EMF
Define EMF (and the Volt) in terms of work done on charge
Understand and describe a model for current in terms of charge carrier density and drift speed.
\Box Use the equation Q = I t
\square Know the nature and importance of insulators.
Understand a "volt-drop" as a loss of potential and in terms of work being done by a charge
Know that both EMF and volt-drop are "voltages" if voltage is a voltmeter reading

	Understand that EM.F. is the cause of current flow and p.d is the result
Re	esistance
St	udents should be able to:
	Define resistance in terms of volt-drop (voltage) and current.
	Define the ohm
	Understand the <i>basic</i> concept of resistivity of a material by using a range of metals from silver to iron.
	Know the reason for electric current flow.(change in energy)
	Understand a simple electric circuit in terms of source and load. (reason for each.)
	State Ohm's law and interpret graphically
	Understand the limitations of Ohm's law
	Understand that there are non-ohmic conductors such as lamps, thermistors, LEDs, LDRs and diodes
	Interpret non-linear graphs of V and I
Ci	rcuits and meters
St	udents should be able to:
	Understand the basic circuit as a close loop with equality of current in all parts
	Understand the simple one-loop circuit in terms of the EMF, voltage drop and current.
	lacksquare Understand the characteristics of voltmeters and ammeters
	How to use a multimeter as an ammeter and a voltmeter and how to connect them in a circuit
	How to use a multimeter as a simple Ohmmeter and how to measure resistances (that are otherwise "unpowered")
Lo	ops and loads
St	udents should be able to:
	Understand the behaviour of current and voltage drops(p.d) in multi- element series circuits.
	Understand the behaviour of current and voltage drop (p.d) in multi- element parallel circuits
	lacksquare Use series and parallel combinational formulas in practical systems
	Analyse and predict voltages and current in "complex" circuits with ohmic components (and test practically)
	Use ohmmeter to measure R of a complex network
	lacksquare Understand the use of variable resistors as rheostats and

potentiometers.

Understand the use and design of voltage dividers as variable voltage supplies (+limitations)

Electrical work and power

Students should be able to:

- Understand that work is done when charge moves across a potential difference (energy is changed)
- Understand that current and the potential difference determines the power in the section or component
- Use W = Q V = V I t and P = V I in practical systems
- Illustrate electric work with resistive heating
- Distinguish the power of devices/systems from the electric work/energy that is used and paid for

Magnetic Flux and field

Students should be able to:

- Understand the link between current and flux
- Understand the purpose of a small compass in determination of flux direction
- Sketch the field of a bar magnet and a U-shaped magnet

Use "a rule" to find the direction of the magnetic field around a current	t
carrying conductor and the magnetic polarity of a current carrying coil.	

- Sketch the field round a long straight wire with current; round two long straight parallel wires with a current; round and through a solenoid with current
- Know that field is uniform within the solenoid
- Know that field strength decreases inversely with distance from a long straight current (wire)
- Understand the terms: flux, field, forces, poles in the magnetic context

Know the units for flux and magnetic field strength.

Magnetic forces

Students should be able to:

- Understand the relation between current in a length of wire, uniform magnetic field, and the force acting on both current and magnet
- Use a "rule" to link directions of the 3 vectors
- Use F= BIL in practical systems
- Describe the operation of a simple DC motor with one coil situated in a uniform magnetic field.
- Know why a commutator is necessary in a DC motor
- Use F = B Q v in solution of particle beam systems (constant speed across field)

Understand how a force is exerted on a electron moving through a magnetic field.

Understand why a commutator is necessary in a DC generator.

Electromagnetic induction

Students should be able to:

- Understand the circumstances and quantities that control the production, direction and size of the induced EMF and induced current
- Understand the relationship between a conductor being moved through a magnetic field, the direction of the field and the polarity of the induced EMF in the conductor.

 \Box Use "a rule" to link the 3 vectors.

- \Box Use the equation E = B v I in solution of practical problems
- Understand that there are other methods (besides magnet or coil motion) for producing induced current
- Describe the operation of a simple generator with one coil turning at constant rate in a uniform magnetic field
- Know that the output EMF (and current into a resistive load) is a "sinewave" form (AC)