93103

NZQA
NEW ZEALAND QUALIFICATIONS AUTHORITY MANA TOHU MÄTAURANGA O AOTEAROA

QUALIFY FOR THE FUTURE WORLD KIA NOHO TAKATŪ KI TŌ ĀMUA AO!

Tick this box if there is no writing in this booklet

Scholarship 2020 Physics

2.00 p.m. Wednesday 25 November 2020

Time allowed: Three hours
Total score: 32
Check that the National Student Number (NSN) on your admission slip is the same as the number at the top of this page.

You should answer ALL the questions in this booklet.
For all 'describe' or 'explain' questions, the answers should be written or drawn clearly with all logic fully explained.

For all numerical answers, full working must be shown and the answer must be rounded to the correct number of significant figures and given with the correct SI unit.

Formulae you may find useful are given on page 2.

If you need more room for any answer, use the extra space provided at the back of this booklet.

Check that this booklet has pages $2-19$ in the correct order and that none of these pages is blank.

You are advised to spend approximately 45 minutes on each question.
YOU MUST HAND THIS BOOKLET TO THE SUPERVISOR AT THE END OF THE EXAMINATION.

Question	Score
ONE	
TWO	
THREE	
FOUR	
TOTAL	
ASSESSOR'S USE ONLY	

The formulae below may be of use to you.

$\begin{aligned} & v_{\mathrm{f}}=v_{\mathrm{i}}+a t \\ & d=v_{\mathrm{i}}+\frac{1}{2} a t^{2} \\ & d=\frac{v_{\mathrm{i}}+v_{\mathrm{f}}}{2} t \\ & v_{\mathrm{f}}^{2}=v_{\mathrm{i}}^{2}+2 a d \\ & F_{\mathrm{g}}=\frac{\mathrm{G} M m}{r^{2}} \\ & F_{\mathrm{c}}=\frac{m v^{2}}{r} \\ & \Delta p=F \Delta t \\ & \omega=2 \pi f \\ & d=r \theta \\ & v=r \omega \\ & a=r \alpha \\ & W=F d \\ & F_{\mathrm{net}}=m a \\ & p=m v \\ & x_{\mathrm{COM}}=\frac{m_{1} x_{1}+m_{2} x_{2}}{m_{1}+m_{2}} \\ & \omega=\frac{\Delta \theta}{\Delta t} \\ & \alpha=\frac{\Delta \omega}{\Delta t} \\ & L=I \omega \\ & L=m v r \\ & \tau=I \alpha \\ & \tau=F r \\ & E_{\mathrm{K}(\mathrm{ROT})}=\frac{1}{2} I \omega^{2} \\ & E_{\mathrm{K}(\mathrm{LIN})}=\frac{1}{2} m v^{2} \\ & \Delta E_{\mathrm{p}}=m \mathrm{~g} h \\ & \omega_{\mathrm{f}}=\omega_{\mathrm{i}}+\alpha t \\ & \omega_{\mathrm{f}}^{2}=\omega_{\mathrm{i}}^{2}+2 \alpha \theta \\ & \theta=\frac{\left(\omega_{\mathrm{i}}+\omega_{\mathrm{f}}\right) t}{2} \\ & \theta=\omega_{\mathrm{i}} t+\frac{1}{2} \alpha t^{2} \\ & l_{2} \end{aligned}$	$\begin{aligned} & T=2 \pi \sqrt{\frac{l}{\mathrm{~g}}} \\ & T=2 \pi \sqrt{\frac{m}{k}} \\ & E_{\mathrm{p}}=\frac{1}{2} k y^{2} \\ & F=-k y \\ & a=-\omega^{2} y \\ & y=A \sin \omega t \quad y=A \cos \omega t \\ & v=A \omega \cos \omega t \quad v=-A \omega \sin \omega t \\ & a=-A \omega^{2} \sin \omega t \quad a=-A \omega^{2} \cos \omega t \\ & \Delta E=V q \\ & P=V I \\ & V=E d \\ & Q=C V \\ & C_{\mathrm{T}}=C_{1}+C_{2} \\ & 1 \\ & \hline C_{\mathrm{T}}=\frac{1}{C_{1}}+\frac{1}{C_{2}} \\ & E=\frac{1}{2} Q V \\ & C=\frac{\varepsilon_{\mathrm{o}} \varepsilon_{\mathrm{r}} A}{d} \\ & \tau=R C \\ & \frac{1}{R_{\mathrm{T}}}=\frac{1}{R_{1}}+\frac{1}{R_{2}} \\ & R_{\mathrm{T}}=R_{1}+R_{2} \\ & V=I R \\ & F=B I L \\ & F \end{aligned}$	$\begin{aligned} & \phi=B A \\ & \varepsilon=-\frac{\Delta \phi}{\Delta t} \\ & \varepsilon=-L \frac{\Delta I}{\Delta t} \\ & \frac{N_{\mathrm{p}}}{N_{\mathrm{s}}}=\frac{V_{\mathrm{p}}}{V_{\mathrm{s}}} \\ & E=\frac{1}{2} L I^{2} \\ & \tau=\frac{L}{R} \\ & I=I_{\mathrm{MAX}} \sin \omega t \\ & V=V_{\mathrm{MAX}} \sin \omega t \\ & I_{\mathrm{MAX}}=\sqrt{2} I_{\mathrm{rms}} \\ & V_{\mathrm{MAX}}=\sqrt{2} V_{\mathrm{ms}} \\ & X_{\mathrm{C}}=\frac{1}{\omega C} \\ & X_{\mathrm{L}}=\omega L \\ & V=I Z \\ & f_{0}=\frac{1}{2 \pi \sqrt{L C}} \\ & n \lambda=\frac{d x}{L} \\ & n \lambda=d \sin \theta \\ & f^{\prime}=f \frac{V_{\mathrm{W}}}{V_{\mathrm{W}} \pm V_{\mathrm{S}}} \\ & E=\mathrm{h} f \\ & \mathrm{~h} f=\phi+E_{\mathrm{K}} \\ & E=\Delta m \mathrm{c}^{2} \\ & \frac{1}{\lambda}=\mathrm{R}\left(\frac{1}{S^{2}}-\frac{1}{L^{2}}\right) \\ & E_{\mathrm{n}}=-\frac{\mathrm{hcR}}{n^{2}} \\ & v=f \lambda \\ & f=\frac{1}{T} \\ & \hline \end{aligned}$

This page has been deliberately left blank.

QUESTION ONE: RESONANCE CIRCUIT

A capacitor, ideal inductor, and 12.0Ω resistor are connected in series to a $6.50 \mathrm{~V}_{\mathrm{rms}}$ variable frequency power supply.

(a) State the conditions for resonance in a circuit of this type, and describe what you could measure to determine when resonance has been reached.
(b) If a circuit like this is at or near resonance, it is possible for both the inductor rms voltage and the capacitor rms voltage to exceed the rms voltage of the power supply.

Explain how this can occur.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The frequency of the power supply is adjusted, while the supply voltage remains constant at $6.50 \mathrm{~V}_{\mathrm{rms}}$. When the frequency of the supply is $f=134 \mathrm{~Hz}$, the current in the circuit is $0.400 \mathrm{~A}_{\mathrm{rms}}$. The supply frequency is then increased, and the current changes. But at $f=199 \mathrm{~Hz}$, the current in the circuit is again $0.400 \mathrm{~A}_{\mathrm{rms}}$. None of the components are changed while this occurs.
(c) Explain how it is possible to have the same current in the circuit at two different frequencies.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(d) Calculate the values of the capacitance, C, and inductance, L, in the circuit.

QUESTION TWO: THE DOPPLER EFFECT

For a moving source of sound, the frequency heard by a stationary observer can be calculated using the following equation:

$$
f^{\prime}=\frac{f v_{\mathrm{w}}}{v_{\mathrm{w}} \pm v_{\mathrm{s}}}
$$

(a) (i) Explain the use of the \pm symbol in this equation.
(ii) State the assumptions made about the velocity of the moving source of sound.
\qquad
\qquad
\qquad
(b) An object is moving in a circle with radius, r, at a constant speed, v_{s}, while emitting sound with a constant frequency.

At the instant the observer, at point P , hears the sound at maximum frequency, the source has reached the position indicated in the diagram.

Show that $\theta=\frac{v_{\mathrm{s}} \sqrt{d^{2}-r^{2}}}{v_{\mathrm{w}} r}+\sin ^{-1} \frac{r}{d}$.
(c) The Doppler effect can also be observed when a moving observer approaches a stationary wave source at a speed v_{0}. The relationship for the apparent frequency f^{\prime}, when an observer moving at speed v_{o} approaches a stationary source, is given by: $f^{\prime}=\frac{f\left(v_{\mathrm{w}}+v_{\mathrm{o}}\right)}{v_{\mathrm{w}}}$.

Explain when the observer would experience the greater Doppler shift: when the source approaches the stationary observer at a speed v; or when the observer approaches the stationary source at the same speed v.

QUESTION THREE: COLLISIONS

Mass of neutron $=1.675 \times 10^{-27} \mathrm{~kg}$
$1 \mathrm{eV}=1.602 \times 10^{-19} \mathrm{~J}$
(a) (i) A slider S_{1} is moving along an air track at constant velocity v, and collides elastically with a stationary, identical slider S_{2}, as shown in the diagram.

Explain why S_{1} stops and S_{2} moves off with velocity v.
\qquad
\qquad
\qquad
\qquad
(ii) In a second experiment, slider S_{1} is given a velocity of $1 \mathrm{~m} \mathrm{~s}^{-1}$ along the air track and collides elastically with another slider S_{3} that has mass n times that of S_{1}, and is stationary.

Show that, after the collision, the velocity of S_{1} is given by $v_{1}=\frac{1-n}{1+n} \mathrm{~m} \mathrm{~s}^{-1}$, and the velocity of S_{3} is given by $v_{3}=\frac{2}{1+n} \mathrm{~m} \mathrm{~s}^{-1}$.
(iii) In a third experiment, the two sliders change roles, so that S_{3} is moving at a velocity of $1 \mathrm{~m} \mathrm{~s}^{-1}$ along the air track, and collides elastically with S_{1}, which is initially stationary.

Use the answer from (a)(ii), and noting that S_{1} has mass $\frac{1}{n}$ times that of S_{3}, show that after the collision,
$v_{3}=\frac{n-1}{n+1} \mathrm{~m} \mathrm{~s}^{-1}$ and $v_{1}=\frac{2 n}{n+1} \mathrm{~m} \mathrm{~s}^{-1}$.
(b) Use the result of (a)(iii) to show that, if a massive bat is swung with a top speed of $V \mathrm{~m} \mathrm{~s}^{-1}$ to hit a stationary light ball in an elastic collision, the top speed of the ball is approximately 2 V .
(c) (i) In the reactor of nuclear power stations, fast neutrons with energies of about 2 MeV typically, are produced by fission of ${ }^{235} \mathrm{U}$. For a chain reaction to occur, these neutrons must be slowed down to energies of 1 eV or less, by colliding with materials, such as heavy water (water that contains hydrogen nuclei with an additional neutron).

Calculate the velocity lost when these fast neutrons are slowed down.
\qquad
\qquad
\qquad
(ii) Using the results from parts (a) and (b), explain why heavy water is used to slow down the fast neutrons, and suggest a reason why heavy water is used rather than common water.

QUESTION FOUR: SLIDING WIRES

A parallel pair of fixed, horizontal conducting tracks T_{A} and T_{B} lie in a uniform magnetic field B, as shown.

Track T_{A} is divided by a switch, on either side of which rest two identical metal wires (each of resistance R) that can slide without friction along the track.

Initially, both wires, W_{1} and W_{2}, are stationary.
With the switch open, wire W_{2} is given a short push to the right, and then moves at a constant velocity, v.
(a) Explain what occurs to the electrons in W_{2} as they move through the magnetic field.
\qquad
\qquad
\qquad
\qquad
(b) Explain why W_{2} slides along at a constant velocity.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

While W_{2} is moving to the right, the switch is snapped shut.
(c) Describe and explain the subsequent motions of both W_{1} and W_{2}.
(d) Determine the final velocities of W_{1} and W_{2}.

Explain your reasoning.
\qquad
\qquad
\qquad
\qquad
\qquad
(e) Explain the energy changes that follow as a result of the switch being closed.
\qquad
\qquad
\qquad
\qquad
\qquad

Extra space if required. Write the question number(s) if applicable.

Extra space if required. Write the question number(s) if applicable.

Extra space if required. Write the question number(s) if applicable.

Extra space if required. Write the question number(s) if applicable.

Extra space if required. Write the question number(s) if applicable.

Extra space if required. Write the question number(s) if applicable.

Extra space if required. Write the question number(s) if applicable.

Extra space if required. Write the question number(s) if applicable.

