Assessment Schedule - 2022
Scholarship Physics (93103)
Evidence Statement

Q	Evidence	$\begin{gathered} \text { 1-4 } \\ \text { Below Schol } \end{gathered}$	5-6 Scholarship	$7-8$ Outstanding
ONE (a)	PE effect quantisation of energy of light / photons vs. Bohr model quantisation of energy of electron.	Thorough understanding of these applications of physics. OR Partially correct mathematical solution to the given problems. AND / OR Partial understanding of these applications of physics.	(Partially) correct mathematical solution to the given problems. AND / OR Reasonably thorough understanding of these applications of physics.	Correct mathematical solution to the given problems. AND Thorough understanding of these applications of physics.
(b)	Require [electric field] nodes at mirrored ends: $n \lambda=2 L$ where $n=1,2,3, \ldots$ and $L=$ the cavity length For $\lambda=490 \mathrm{~mm}, n=\frac{2 \times 0.05}{490 \times 10^{-9}}=204082$ For $\lambda=480 \mathrm{~mm}, n=\frac{2 \times 0.05}{480 \times 10^{-9}}=208333$ All values of n between these limits will give allowed modes, so there are $208333-204082=4251$ allowed modes.			
(c)	Energy associated with mass loss: $E=m c^{2}=4.3 \times 10^{9} \times\left(3 \times 10^{8}\right)^{2}=3.87 \times 10^{26} \mathrm{~J}$ each second For 550 mm light, $f=\frac{3 \times 10^{8}}{550 \times 10^{-9}}=5.45 \times 10^{14} \mathrm{~Hz}$ So $\frac{E}{\mathrm{~h} f}=\frac{3.9 \times 10^{26}}{6.63 \times 10^{-34} \times 5.5 \times 10^{14}}$ $=1.07 \times 10^{45}$ photons per second Proportion of total emitted photons absorbed by Earth is $\frac{A_{\text {Earth }}}{A_{\text {Earth orbit }}}=\frac{\pi \times 6370000^{2}}{4 \pi \times 150000000^{2}}=4.51 \times 10^{-10}$ No. photons absorbed by Earth $=1.07 \times 10^{45} \times 4.51 \times 10^{-10}$ $=4.82 \times 10^{35}$ photons per second The momentum of one photon is $p=\frac{\mathrm{h}}{\lambda}=\frac{6.63 \times 10^{-34}}{550 \times 10^{-9}}=1.21 \times 10^{-27} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$ Total momentum imparted to Earth in one second is $1.21 \times 10^{-27} \times 4.82 \times 10^{35}=5.84 \times 10^{8} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$ Force, $F=\frac{\Delta p}{\Delta t}=5.84 \times 10^{8} \mathrm{~N}$			
(d)(i)	Gravitational / Centripetal / Net force on Earth is in the order of $10^{22} \mathrm{~N}$, force from photons is only $10^{8} \mathrm{~N}$, so is insignificant. OR The acceleration caused by this force is $a=\frac{F}{m}=\frac{6 \times 10^{8}}{5.98 \times 10^{24}}=1 \times 10^{-16} \mathrm{~m} \mathrm{~s}^{-2}$ which is insignificant (would take about 4.5 years to move Earth 1 m).			
(ii)	The reflected light bounces back, rather than stopping / being absorbed. So it has a larger impulse and transfers more momentum to the Earth than absorbed light. So the force would increase (but is still insignificant).			

Q	Evidence	$1-4$ Below Schol	$\begin{gathered} \text { 5-6 } \\ \text { Scholarship } \end{gathered}$	$7-8$ Outstanding
$\begin{aligned} & \text { TWO } \\ & \text { (a)(i) } \end{aligned}$	The wind has a change in direction, so also has a change in momentum. As the air has a change in momentum / impulse, there is a force on the mass of air. There is an equal and opposite reaction force on the sail.	Reasonably thorough understanding of this application of physics. OR Partially correct mathematical solution to the given problems. AND / OR Partial understanding of this application of physics.	(Partially) correct mathematical solution to the given problems. AND / OR Reasonably thorough understanding of this application of physics.	Correct mathematical solution to the given problems. AND Thorough understanding of this application of physics.
(ii)	The direction of the force on the wind is in the same direction as the Δv of the wind $\left(\Delta v=v_{f}-v_{i}\right)$. The direction of the force on the boat is in the opposite direction to the Δv of the wind. The direction of $-\Delta v$ is not perpendicular to the velocity of the boat, but has a small forwards component, meaning there is a small forwards force on the boat.			
(b)	Mass $=$ density \times area of sails \times velocity of air normal to sails. Density $=1.23 \mathrm{~kg} \mathrm{~m}^{-3}$ Area of sails $=40 \mathrm{~m}^{2}$ Velocity of air relative to sails $=14.9 \mathrm{~m} \mathrm{~s}^{-1}$ Velocity of air normal to sails $=14.9 \times \sin 28.4^{\circ}$ $\mathrm{m}=1.23 \times 40.0 \times 14.9 \times \sin 28.4^{\circ}=349 \mathrm{~kg}$ (An equivalent approach is to look at the area normal to the wind defined by the sails.)			

Q	Evidence	$\begin{gathered} 1-4 \\ \text { Below Schol } \end{gathered}$	$\begin{gathered} \text { 5-6 } \\ \text { Scholarship } \end{gathered}$	$\begin{gathered} 7-8 \\ \text { Outstanding } \end{gathered}$
THREE (a)(i)	Component of gravitational force down the rails: $F_{\mathrm{g}}=m g \sin \theta$ Magnetic force up the rails: $\begin{aligned} & F_{\mathrm{mag}}=B I L \cos \theta=B \frac{V}{R} L \cos \theta=B \frac{B v L \cos \theta}{R} L \cos \theta \\ & =\frac{B^{2} v L^{2} \cos ^{2} \theta}{R} \\ & F_{\mathrm{g}}=F_{\text {mag }} \\ & m g \sin \theta=\frac{B^{2} v L^{2} \cos ^{2} \theta}{R} \\ & v=\frac{m g R \sin \theta}{B^{2} L^{2} \cos ^{2} \theta}=\frac{m g R \tan \theta}{B^{2} L^{2} \cos \theta} \end{aligned}$ OR Equate power due to loss of gravitational potential energy to power dissipated in the resistor, to get the same equation.	Reasonably thorough understanding of this application of physics. OR Partially correct mathematical solution to the given problems. AND / OR Partial understanding of this application of physics.	(Partially) correct mathematical solution to the given problems. AND / OR Reasonably thorough understanding of this application of physics.	Correct mathematical solution to the given problems. AND Thorough understanding of this application of physics.
(ii)	No difference. It is the change in magnetic flux that is important in creating an electromagnetic force, not its direction. Although B and I will change by 180°, the combined effect of both will be to create a force that still opposes the motion of the roller down the ramp.			
(b)	Equation 1: $\begin{aligned} & v=\frac{m g R \tan \theta}{B^{2} L^{2} \cos \theta} \\ & =\frac{0.005 \times 9.81 \times 10 \times \tan 25^{\circ}}{2^{2} \times 0.5^{2} \times \cos 25^{\circ}} \\ & =0.252 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$ Equation 2: $\begin{aligned} & v=\frac{m g R}{B^{2} L^{2}}\left(\theta+\frac{5 \theta^{3}}{6}\right) \\ & =\frac{0.005 \times 9.81 \times 10}{2^{2} \times 0.5^{2}} \times\left(0.436+\frac{5 \times 0.436^{3}}{6}\right) \\ & =0.248 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$ Difference: $\frac{\Delta v}{v}=\frac{0.252-0.248}{0.252}=0.016=1.6 \%$ OR compares $\frac{\tan \theta}{\cos \theta} \text { to } \theta+\frac{5}{6} \theta^{3}$ for the same result.			

Q	Evidence	1-4 Below Schol	5-6 Scholarship	7-8 Outstanding
(c)	$v=\frac{m g R \tan \theta}{B^{2} L^{2} \cos \theta}$ $=\frac{0.005 \times 9.81 \times 10 \times \tan 85^{\circ}}{2^{2} \times 0.5^{2} \times \cos 85^{\circ}}$ $=64.3 \mathrm{~m} \mathrm{~s}^{-1}$	For free fall under gravity, this would require a minimum height of more than 200 m for the constant velocity to be reached. Therefore, the experimental set-up is unsuitable for testing the equation at high angles.		
(d)	There will be no effect of the rolling on Equation \#1, because the rotational energy (and the kinetic energy for that matter) has no effect on the balance of forces (or, from an energy viewpoint, on the balance between the gravitational potential energy loss and the resistive energy loss).			

Question	Evidence	$\begin{gathered} 1-4 \\ \text { Below Schol } \end{gathered}$	$\begin{gathered} \text { 5-6 } \\ \text { Scholarship } \end{gathered}$	$\begin{gathered} 7-8 \\ \text { Outstanding } \end{gathered}$
$\begin{aligned} & \text { FOUR } \\ & \text { (a)(i) } \end{aligned}$	$T=365.25$ days	Thorough understanding of these applications of physics. OR Partially correct mathematical solution to the given problems. AND / OR Partial understanding of these applications of physics.	(Partially) correct mathematical solution to the given problems. AND / OR Reasonably thorough understanding of these applications of physics.	Correct mathematical solution to the given problems. AND Thorough understanding of these applications of physics.
(ii)	$\begin{aligned} & F_{\text {net }}=F_{\mathrm{c}}=\frac{m v^{2}}{r}=\frac{m\left(\frac{2 \pi r}{T}\right)^{2}}{r}=\frac{4 \pi^{2} m r}{T^{2}} \\ & =\frac{4 \pi^{2} \times 6160 \times\left(1.50 \times 10^{11}+1.50 \times 10^{9}\right)}{(365.25 \times 24 \times 60 \times 60)^{2}} \\ & =37.0 \mathrm{~N} \end{aligned}$ OR $\begin{aligned} & F_{\text {net }}=F_{\mathrm{GSSI}}+F_{\mathrm{G} \text { Earth }} \\ & F_{\text {net }}=\frac{6.67 \times 10^{-11} \times 1.99 \times 10^{30} \times 6160}{\left(1.50 \times 10^{11}+1.50 \times 10^{9}\right)^{2}} \\ & \\ & +\frac{6.67 \times 10^{-11} \times 5.98 \times 10^{24} \times 6160}{\left(1.50 \times 10^{9}\right)^{2}} \end{aligned}$ $F_{\text {net }}=36.7 \mathrm{~N}$ (Slight differences between methods due to assumptions used.)			
(b)(i)	The CoM of the system must be at the centre of the larger mass. OR The r terms in the equations for F_{C} and F_{G} must be the same. Or m_{1} effectively stays in the same position.			
(ii)	The orbit is circular. Or a closed system of only two bodies / no external forces.			

Question	Evidence	$\begin{gathered} 1-4 \\ \text { Below Schol } \end{gathered}$	$\begin{gathered} \text { 5-6 } \\ \text { Scholarship } \end{gathered}$	$\begin{gathered} 7-8 \\ \text { Outstanding } \end{gathered}$
(c)	For m_{2} : $x_{\mathrm{COM}}=\frac{m_{1} R+m_{2} 0}{m_{1}+m_{2}}=\frac{m_{1} R}{m_{1}+m_{2}}$ Assuming m_{2} has a circular orbit with radius $x_{\text {Com }}$: $\begin{aligned} & F_{\mathrm{c}}=F_{\mathrm{g}} \\ & \frac{m_{2} v^{2}}{x_{\mathrm{CoM}}}=\frac{G m_{1} m_{2}}{R^{2}} \\ & v^{2}=\frac{G m_{1} x_{\mathrm{COM}}}{R^{2}} \\ & \left(\frac{2 \pi x_{\mathrm{CoM}}}{T}\right)^{2}=\frac{G m_{1} x_{\mathrm{COM}}}{R^{2}} \\ & \frac{4 \pi^{2} x_{\mathrm{COM}}}{T^{2}}=\frac{G m_{1}}{R^{2}} \\ & T^{2}=\frac{4 \pi^{2} R^{2} x_{\mathrm{COM}}}{G m_{1}} \\ & T^{2}=\frac{4 \pi^{2} R^{2}}{G m_{1}} \cdot \frac{m_{1} R}{m_{1}+m_{2}} \\ & T^{2}=\frac{4 \pi^{2} R^{3}}{G\left(m_{1}+m_{2}\right)} \end{aligned}$			

Question	Evidence	$\begin{gathered} 1-4 \\ \text { Below Schol } \end{gathered}$	$\begin{gathered} \text { 5-6 } \\ \text { Scholarship } \end{gathered}$	$\begin{gathered} 7-8 \\ \text { Outstanding } \end{gathered}$
(d)	During one period of the Moon's phases, t, the Earth moves through an angle θ_{E}. During this time the Moon will turn through one complete 2π radian orbit, plus an additional $\theta_{\text {E }}$ to return to the needed alignment with the Sun and Earth. $\begin{aligned} & \theta_{\mathrm{M}}=2 \pi+\theta_{\mathrm{E}} \\ & \omega_{\mathrm{M}} t=2 \pi+\omega_{\mathrm{E}} t \\ & \omega_{\mathrm{M}} t-\omega_{\mathrm{E}} t=2 \pi \\ & \left(\omega_{\mathrm{M}}-\omega_{\mathrm{E}}\right) t=2 \pi \\ & \left(\frac{2 \pi}{T_{\mathrm{M}}}-\frac{2 \pi}{T_{\mathrm{E}}}\right) t=2 \pi \\ & \left(\frac{1}{T_{\mathrm{M}}}-\frac{1}{T_{\mathrm{E}}}\right) t=1 \\ & t=\frac{1}{\frac{1}{T_{\mathrm{M}}}-\frac{1}{T_{\mathrm{E}}}} \\ & t=\frac{1}{\frac{1}{27.3}-\frac{1}{365.25}} \\ & t=29.5 \text { days } \end{aligned}$ OR Use iterative method to calculate time taken for Moon to 'catch up' with Earth. 1 orbit $=27.3$ days In 27.3 days, Earth moves $\frac{27.3}{365.25}=0.0747$ further around its orbit. $0.0747 \times 27.3=2.04$ days extra for Moon to catch up $=29.34$ days total In extra 2.04 days, Earth moves $\frac{2.04}{365.25}=5.59 \times 10^{-3}$ further round its orbit. $5.59 \times 10^{-3} \times 27.3=0.15$ days extra for Moon to catch up $=29.49$ days total $=29.5$ days (3 s. f.) (Additional iterations do not change answer to 3 s.f.)			

