Assessment Schedule – 2023

Scholarship Chemistry (93102)

Evidence Statement

Q	Evidence	Scholarship Not Awarded	Scholarship	Outstanding Scholarship
ONE (a)(i) (ii)	$c(\Gamma) = 0.00167 \text{ mol } L^{-1} \times \frac{0.025 \text{ L}}{0.060 \text{ L}} = 6.9583 \times 10^{-4} \text{ mol } L^{-1}$ $c(Pb^{2+}) = 0.0225 \text{ mol } L^{-1} \times \frac{0.035 \text{ L}}{0.060 \text{ L}} = 1.3125 \times 10^{-2} \text{ mol } L^{-1}$ $c(Ag^+) = 0.0143 \text{ mol } L^{-1} \times \frac{0.035 \text{ L}}{0.060 \text{ L}} = 8.3416 \times 10^{-3} \text{ mol } L^{-1}$ $Q(PbI_2) = 6.35 \times 10^{-9}$ No precipitate will be observed in the first beaker. OR If the assumption is made that $[OH^-] = 10^{-7}$ in the mixture, then $Q(Pb(OH)_2) = 1.31 \times 10^{-16}$ As $Q > K_s(Pb(OH)_2)$ and a precipitate of Pb(OH) ₂ will form in the first beaker, $Q(AgI) = 5.80 \times 10^{-6}$ A yellow precipitate will be observed in the second beaker. If $[OH^-] = 10^{-7}$ in water, then $Q(Pb(OH)_2) = 2.25 \times 10^{-16}$ If only distilled water is used instead of dilute nitric acid, then $[OH^-]$ will be close to 10^{-7} , and a precipitate of Pb(OH) ₂ will be possible. $Q > K_s(Pb(OH)_2)$. The use of dilute nitric acid lowers $[OH^-]$, and thus prevents the formation of a precipitate in the Pb(NO_3)_2 solution.	 Any of the following: Calculates Q value. Compares Q to K_s to justify one beaker observation. Explains acidification of lead(II) nitrate solution. Identifies Co³⁺ ions as catalyst. Explains temperature effects on rate. Draws correct Lewis diagram. Assigns correct bond angles to molecular shape. Explains bond angles for one shape. 	 A range of the following: Calculates <i>Q</i> values and compares to <i>K</i>s values to justify beaker observations, but with limited justification of acidification of lead(II) nitrate solution. Discusses the role of Co³⁺ ions and temperature in increasing the rate of reaction for the demonstration, with some links to particle collision theory. Draws correct Lewis diagrams, with associated bond angles and shapes, for two of the three ions, and explains the bond angles in one shape. 	 A range of the following: Correctly calculates Q values and compares to Ks values to justify beaker observations, and fully explains why acidification of lead(II) nitrate solution is required. Comprehensively discusses the role of Co³⁺ ions as a catalyst and elaborates on the temperature requirements with clear references to particle collision theory. Draws correct Lewis diagrams for all three ions, proposes logical shapes and bond angles, and explains axial and equatorial bond angles for one shape.

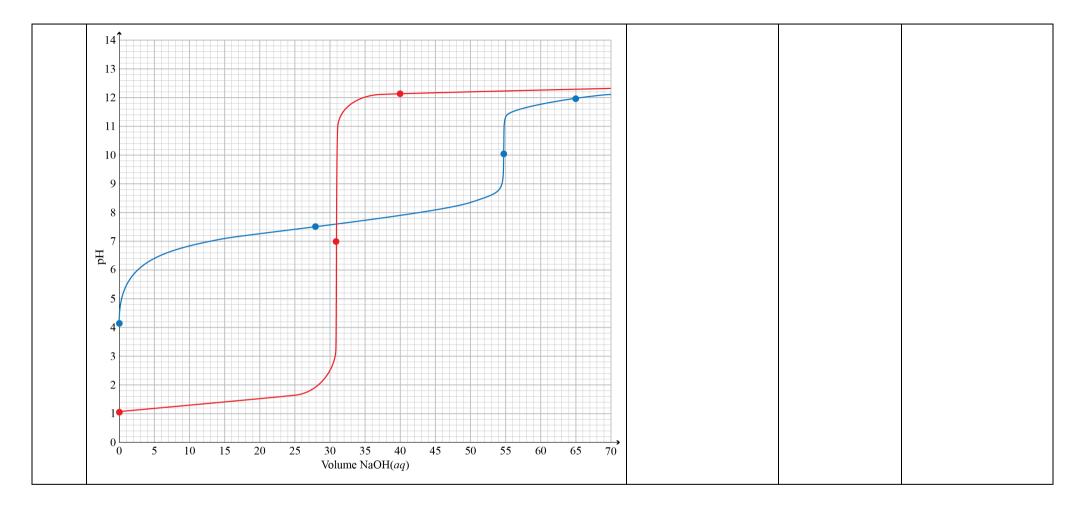
(b)	When the temperature is increased, this increases the kinetic energy of the particles so that there are more collisions per second of sufficient energy for reaction to occur. The Co ³⁺ ions act as a catalyst. The catalyst makes available an alternative pathway for the reaction to occur, with a lower activation energy requirement. The combination of heating and use of a catalyst increases the number of successful collisions per second between the reactant particles to a rate that enables the demonstration to work. If either of these two conditions are not met, either by not forming the Co ³⁺ catalyst, or not heating to the required temperature, then there will not be a sufficient enough number of successful reactant particle collisions per second occurring for the demonstration to go to plan.
(c)(i)	$ \begin{array}{ c c c c c c } \hline Ion & ZrF_5^{-} & ZrF_6^{2-} & ZrF_7^{3-} \\ \hline \\ \hline \\ Lewis \\ structure \\ \hline \\ \cdot \\ \cdot$
(ii)	ZrF_{5} is trigonal bipyramidal. Three regions of electron density around the equatorial plane will be distributed equally with bond angles of 120°. There will be bond angles of 90° between the equatorial and axial planes. ZrF_{6}^{2-} is octahedral. Four regions of electron density around the equatorial plane will be distributed equally with bond angles of 90°. There will be bond angles of 90° between the equatorial and axial planes. ZrF_{7}^{3-} is pentagonal bipyramidal. Five regions of electron density around the equatorial plane will be distributed equally with bond angles of $\sim 72^{\circ}$. There will be bond angles of 90° between the equatorial and axial planes.

Q	Evidence				Scholarship Not Awarded	Scholarship	Outstanding Scholarship
TWO (a)(i) (ii)	thus interact throu molecules are pola bonded to an O / N pair of electrons o 1-fluoropropane h potential to enable there is no H atom present, and it will Propan-1-ol has T. present, which ena molecules. The hy bond is more polar electronegative tha The two amines be bonds between mo aminopropane mo aminopropane mo molecules, increas higher boiling poin Heptane molecule or hydrogen bonds thus electron cloud temporary dipole (While TD forces a intermolecular for	1-fluoropropane -2.50 °C ds have roughly simila gh temporary dipole (ar and can form hydro V / F atom on one mol n a nearby O / N / F ar as TD forces, as well a permanent dipole (PI bonded to an O / N / have the lowest boili D forces, is polar and ables the molecules to drogen bonding will be r than an N–H bond, c an nitrogen. It will have oth have similar TD and an extreme the strength of the nt than 2-aminopropar as are non-polar and ur s between molecules. The strength of the nt than 2-aminopropar the strength of the nt than 2-aminopropar as are non-polar and ur s between molecules. The strength of the nt than 2-aminopropar the strength of the nt the only forces of a ces present are strong ces present in the four re the greatest amount t boiling point.	TD) forces to a similar gen bonds where a por ecule forms strong in tom. as a polar C–F bond v D) interactions between F atom, there is no hy ng point. has PD forces, and ha form hydrogen bonds be stronger than in the owing to oxygen being the highest boiling and PD forces and form H bonds present in bo e a more linear shape interact more closely to TD forces. This given he. hable to form any perm The size of the molecules nolecules. attraction present in her or overall than any of compounds in (i). The	ar extent. Three blarised H atom teractions with a lone which has the en molecules. As ydrogen bonding as an O–H bond s with other nearby e amines as the O–H g more point. n similar hydrogen oth compounds. 1- than 2- y with nearby es 1-aminopropane a manent dipole forces ules is large, and to form stronger eptane, the total the combinations of ne attractive forces in	 Any of the following: Assigns correct boiling points to compounds. Description of attractive forces between particles. Describes hydrogen bonding. Describes temporary dipole forces in heptane. Identifies any of Compounds A-C. Proposes one of Compound X or Y. Explains hydrolysis products. Calculates moles of NH₃ produced. Calculates temperature change. Identifies enthalpy or entropy changes in reaction. 	 A range of the following: Justifies the boiling points for three of the five compounds with clear links to the intermolecular forces present. Identifies the name and structure for Compounds A – C and proposes logical structures for Compounds X and Y, with limited justification of hydrolysis products. Calculates the temperature change with minor error and explains some enthalpy or entropy changes that affect the spontaneity of the reaction. 	 A range of the following: Justifies the boiling points for all five compounds with clear links to the intermolecular forces present between particles in each substance. Correctly identifies the name and structure for Compounds A – C, the structure for Compounds X and Y, and justifies why only two molecular products are distilled in each hydrolysis process. Correctly calculates the temperature change of the beaker and elaborates clearly on the enthalpy and entropy changes that affect the overall spontaneity of the reaction.

(b)(i)	Compound A 2-aminopropane	Compound B cyclobutanol	Compound C methylpropanoic acid
	CH ₃ -CH-CH ₃	$CH_2 - CH_2$	CH ₃ -CH-COOH CH ₃
	NH ₂	CH ₂ -CH-OH	ĊH ₃
	Compound X		Compound Y
	CH ₃ -CH-C-O-C	$H - CH_2$	CH ₃ -CH-C-N-CH-CH ₃ IIIII CH ₃ OHCH ₃
	CH ₃ O C	$H_2^- CH_2$	$CH_{3}OHCH_{3}$
(ii)	basic conditions. The the ester is hydrolysed the carboxylic acid an while under basic con following hydrolysis. conditions change. When the carboxylic a does not distill from the attractions that exist. amine are distilled off	amide is hydrolysed ir l into a carboxylic acid d alkyl ammonium ior ditions, the amine and The alcohol functiona acid is deprotonated, it he reaction mixture wh Therefore, under basic as the two molecular	
	not distill from the rea	ction mixture when he Therefore, under acidio	a ammonium cation, which again doe eated, due to the strong ion-water c conditions, only the alcohol and nolecular products.

(c)(i)	$\begin{array}{l} c(\mathrm{H}_{3}\mathrm{O}^{+}) \text{ initial} = 10^{-0.50} &= 0.31622 \text{ mol } \mathrm{L}^{-1} \times 0.100 \text{ L} = 0.03162 \text{ mol} \\ c(\mathrm{H}_{3}\mathrm{O}^{+}) \text{ after reaction} &= 10^{-1.21} = 0.061660 \text{ mol } \mathrm{L}^{-1} \times 0.100 \text{ L} = 0.006166 \text{ mol} \\ n(\mathrm{H}_{3}\mathrm{O}^{+}) \text{ consumed} &= 0.03162 \text{ mol} - 0.006166 \text{ mol} \\ &= 0.02545 \text{ mol} \\ &= n(\mathrm{NH}_{3}) \end{array}$		
	$n(\text{reaction}) = \frac{n(\text{NH}_3)}{2} = \frac{0.02545 \text{ mol}}{2} = 0.01273 \text{ mol}$		
	$\Delta H = \frac{-q}{n}$		
	$q = 0.01273 \text{ mol} \times 90.66 \text{ kJ mol}^{-1} = -1.154 \text{ kJ}$		
	$q = mc\Delta T$		
	$-1154 \text{ J} = 90.72 \text{ g} \times 0.753 \text{ J} \circ \text{C}^{-1} \text{ g}^{-1} \times \Delta T$		
	$\Delta T = \frac{-1154 \text{ J}}{90.72 \text{ g} \times 0.753 \text{ J} ^{\circ}\text{C}^{-1} \text{ g}^{-1}}$		
	$\Delta T = -16.89 \ ^{\circ}\mathrm{C}$		
(ii)	The enthalpy change is positive, indicating an endothermic reaction, with heat energy transferred from the surroundings, resulting in a decrease in the entropy of the surroundings.		
	There is a significant difference in state between the solid reactants and the gaseous, liquid, and aqueous products. These changes result in an increase in the entropy of the system, which is favourable.		
	The reaction is spontaneous, thus the positive entropy change for the system must outweigh the negative entropy change for the surroundings.		

Q	Evidence	Scholarship Not Awarded	Scholarship	Outstanding Scholarship
THREE (a)	F: CH ₃ -C-CH ₂ -CI O Synthesis of W: CH ₃ -C-CH ₂ -CI O W: CH ₃ -C-CH ₂ -CI O O V W: CH ₃ -C-CH ₂ -CI O O O V H'/MnO ₄ '(aq) W: CH ₃ -CH-C-OH O O O O O O O O O O O O O	 Any of the following: Compound F identified. Compound G identified. Scheme attempted with some correct reagents / compounds. Concentration of thiosulfate solution. Calculates mass of Vitamin C in original drink powder. Vitamin C after 24 hours calculated with errors. Balanced redox half and full equations for permanganate reaction. Correct oxidant and reductant for one reaction. Assigns correct oxidation numbers to elements. 	 A range of the following: Determines the identity of compounds F and G and proposes reaction schemes for the synthesis of two of compounds W-Z. Calculates the percentage of Vitamin C remaining after 24 hours with minor error. Correctly identifies the oxidant and reductant in one oxidation-reduction reaction, with clear links to oxidation number changes and balanced half and full equations. 	 A range of the following: Correctly determines the identity of compounds F and G and proposes a set of reaction schemes, with correct reagents, that would enable synthesis of compounds W–Z. Correctly calculates the concentration of sodium thiosulfate, the mass of Vitamin C in the original drink powder, and the percentage of Vitamin C remaining after 24 hours. Justifies the oxidants and reductants in both oxidation-reduction reactions with clear links to oxidation number changes and balanced half and full equations.


(b)(i)	$n(10^{-1}) = -0.132$	<u>g</u>		
	$n(\mathrm{IO}_{3}^{-}) = \frac{0.132}{214 \mathrm{g m}}$	nol^{-1}		
	$= 6.168 \times$			
	$c(\mathrm{IO}_{3^{-}}) = 6.168 \times$			
	$n(IO_3^{-})_{blank} = 6.168 \times$ = 1.2336 >			
	$= 1.2336 > n(I_2)_{blank} = 1.2336 > n(I_2$			
	$= 3.700 \times$			
	$n(S_2O_3^{2-}) = 3.700 \times$			
	= 7.401 ×			
	$c(S_2O_3^{2-}) = \frac{7.401 \times 1000}{0.020}$	10 ⁻⁵ mol		
	0.02	272 L		
	= 2.7213 >	$ 10^{-3} \text{ mol } \mathrm{L}^{-1} $		
	$n(S_2O_3^{2-})_{immediate}$	$= 2.7213 \times 10^{-3} \text{ mol } \text{L}^{-1} \times 0.01610 \text{ L}$		
		$= 4.3812 \times 10^{-5} \text{ mol}$		
	$n(I_2)_{immediate}$	$=\frac{4.3812 \times 10^{-5} \text{ mol}}{2}$		
	<i>n</i> (12)immediate	2		
		$= 2.1906 \times 10^{-5} \text{ mol}$		
	$n(I_2)_{reacted}$	$= 3.700 \text{ x } 10^{-5} \text{ mol} - 2.1906 \times 10^{-5} \text{ mol}$ $= 1.5093 \times 10^{-5} \text{ mol}$		
	n(ascorbic acid)20ml	$= 1.5093 \times 10^{-5} \text{ mol}$ = $1.5093 \times 10^{-5} \text{ mol}$		
	<i>n</i> (ascorbic acid) _{1000mL}	$= 1.5093 \times 10^{-5} \text{ mol} \times 50$		
		$= 7.5468 \times 10^{-4} \text{ mol}$		
	<i>m</i> (ascorbic acid) _{1000m}	$L = 7.5468 \times 10^{-4} \text{ mol} \times 176.1 \text{ g mol}^{-1}$		
		= 0.133 g		
	Yes, the nutritional in	nformation was accurate.		
		$= 2.7213 \times 10^{-3} \text{ mol } \text{L}^{-1} \times 0.01835 \text{ L}$		
		$= 4.9935 \times 10^{-5} \text{ mol}$		
	<i>n</i> (I ₂) _{24hr}	$=\frac{4.9935\times10^{-5} \text{ mol}}{2}$		
		—		
		$= 2.49677 \times 10^{-5} \text{ mol}$ = 3.700 x 10 ⁻⁵ mol - 2.49677 × 10 ⁻⁵ mol		
		$= 1.2032 \times 10^{-5} \text{ mol}$		
	<i>n</i> (ascorbic acid) _{20mL}			

	$ \%(\text{ascorbic acid})_{\text{remaining}} = \frac{1.2032 \times 10^{-5} \text{ mol}}{1.5093 \times 10^{-5} \text{ mol}} \times 100\% $ = 79.7%
(ii)	$12\mathrm{H}^{+} + 10\mathrm{e}^{-} + 2\mathrm{IO}_{3}^{-} \rightarrow \mathrm{I}_{2} + 6\mathrm{H}_{2}\mathrm{O}$
	$2I^- \rightarrow I_2 + 2e^-$
	$\overline{6\mathrm{H}^{+}+5\mathrm{I}^{-}+\mathrm{IO}_{3}^{-}\rightarrow3\mathrm{I}_{2}+3\mathrm{H}_{2}\mathrm{O}}$
	The oxidant is IO_3^- . The oxidation number of I is decreasing from +5 in IO_3^- to 0 in I ₂ , indicating a gain of electrons and reduction. As IO_3^- is reduced, it must be the oxidant in the reaction.
	The reductant is I^- . The oxidation number of I is increasing from -1 in I^- to 0 in I ₂ , indicating a loss of electrons and oxidation. As I^- is oxidised, it must be the reductant in the reaction.
	$MnO_4^- + 4H^+ + 3e^- \rightarrow MnO_2 + 2H_2O$
	$Mn^{2+} + 2H_2O \rightarrow 2e^- + MnO_2 + 4H^+$
	$\overline{2MnO_4^- + 3Mn^{2+} + 2H_2O \rightarrow 5MnO_2 + 4H^+}$
	The oxidant is MnO_4^- . The oxidation number of Mn is decreasing from +7 in MnO_4^- to +4 in MnO_2 , indicating a gain of electrons and reduction. As MnO_4^- is reduced, it must be the oxidant in the reaction.
	The reductant is Mn^{2+} . The oxidation number of Mn is increasing from +2 in Mn^{2+} to +4 in MnO_2 , indicating a loss of electrons and oxidation. As Mn^{2+} is oxidised, it must be the reductant in the reaction.

Q	Evidence	Scholarship Not Awarded	Scholarship	Outstanding Scholarship
FOUR (a)(i) (ii)	The first ionisation enthalpy is the enthalpy change that occurs during the removal of one mole of the least tightly bound electrons from one mole of gaseous atoms. Nitrogen and oxygen are both located in period 2, with valence electrons in the same energy level. Nitrogen is a group 15 element with seven protons, two inner shell electrons, five valence electrons, and the electron arrangement 1s ² , 2s ² , 2p ³ . Oxygen is a group 16 element with eight protons, two inner shell electrons, six valence electrons, and the electron arrangement 1s ² , 2s ² , 2p ³ . Oxygen atoms having one more electron than nitrogen atoms, causing greater electron-electron repulsion between electrons in those orbitals. Oxygen atoms also have one additional proton in the nucleus, causing a greater nuclear charge, and as both have the same degree of shielding by the inner shell electrons, all three 2p orbital. This increased electron-electron repulsion within the paired orbital means that they are in a higher energy position, and thus less energy is required to remove one from the atom. While there is a greater attraction by the nucleus on all the 2p electrons, the electron repulsion within the same orbital is the dominant factor in the first ionisation energies of these elements.	 Any of the following: Defines first ionisation enthalpy. Describes link between protons, electrons, and ionisation enthalpy. Electron arrangements for nitrogen and oxygen. Radii for two particles compared. Cell potential calculation for one beaker correct. Colour for all three beakers correct. Calculates points on either titration curve. 	 A range of the following: Justifies the first ionisation enthalpies of nitrogen and oxygen, with limited comparison of the radii of the three particles. Completes cell potential calculations to determine the final oxidation state of vanadium, and colour, for two solutions. Completes calculations to draw one titration curve correctly. 	 A range of the following: Comprehensively justifies the first ionisation enthalpies for nitrogen and oxygen, and compares the radii of N³⁻, O²⁻, and Ne. Determines the correct colour and oxidation number of vanadium in the three final solutions, with support of cell potential calculations. Draws the correct shape for both titration curves, with key values correctly calculated, with the pH at the point where the two curves intersect correctly determined.

(b)	With Zinc:		
	E°_{cell1} (VO ₂ ⁺ reduced to VO ²⁺) = +1.000.76 = +1.76 V - positive so spontaneous		
	E°_{cell2} (VO ²⁺ reduced to V ³⁺) = +0.340.76 = +1.10 V - positive so spontaneous		
	E°_{cell3} (V ³⁺ reduced to V ²⁺) = -0.260.76 = +0.50 V - positive so spontaneous		
	Zn can reduce VO_2^+ to V^{2+} meaning the final colour is violet (V^{2+}), and the final oxidation number is +2.		
	With Tin:		
	E°_{cell1} (VO ₂ ⁺ reduced to VO ²⁺) = +1.000.14 = +1.14 V - positive so spontaneous		
	E°_{cell2} (VO ²⁺ reduced to V ³⁺) = +0.340.14 = +0.48 V - positive so spontaneous		
	E°_{cell3} (V ³⁺ reduced to V ²⁺) = -0.260.14 = -0.12 V - negative so not spontaneous		
	Sn can reduce VO_2^+ to V^{3+} meaning the final colour is green (V^{3+}), and the final oxidation number is +3.		
	With Silver:		
	E°_{cell1} (VO ₂ ⁺ reduced to VO ²⁺) = +1.00 - +0.80 = +0.20 V - positive so spontaneous		
	E°_{cell2} (VO ²⁺ reduced to V ³⁺) = +0.34 - +0.80 = -0.46 V - negative so not spontaneous		
	Ag can reduce VO_2^+ to VO^{2+} meaning the final colour is blue (VO^{2+}), and the final oxidation number is +4.		

(c)(i)	NaOH + HCl Titration 10^{-1} 04 0 00120 14 1	
	$[H_3O^+] = 10^{-1.04} = 0.09120 \text{ mol } L^{-1}$	
	$n(\text{H}_{3}\text{O}^{+}) = 0.09120 \text{ mol } \text{L}^{-1} \times 0.0300 \text{ L} = 2.736 \times 10^{-3} \text{ mol} = n(\text{NaOH})$	
	$V(\text{NaOH})_{\text{equivalence}} = n/[\text{NaOH}] = \frac{2.736 \times 10^{-5} \text{ mol}}{0.0886 \text{ mol } \text{L}^{-1}} = 30.88 \text{ mL}$	
	$[OH^{-}]_{\text{past equivalence}} = 0.0886 \text{ mol } L^{-1} \times \frac{10 \text{ mL}}{70.88 \text{ mL}} = 0.0125 \text{ mol } L^{-1}$	
	$pH_{past equivalence} = 14 - log(0.0125 \text{ mol } L^{-1}) = 12.10$	
	NaOH + HOCl Titration	
	$[H_3O^+] = 10^{-4.16} = 6.918 \times 10^{-5} \text{ mol } L^{-1}$	
	$10^{-7.53} = \frac{\left(6.918 \times 10^{-5}\right)^2}{\left[\text{HOCl}\right]}$	
	[HOC1] = $0.1622 \text{ mol } L^{-1}$	
	$n(H_3O^+) = 0.1622 \text{ mol } L^{-1} \times 0.0300 \text{ L} = 4.865 \times 10^{-3} \text{ mol}$	
	$V(\text{NaOH})_{\text{equivalence}} = \frac{n(\text{NaOH})}{c(\text{NaOH})} = \frac{4.865 \times 10^{-3} \text{ mol}}{0.0886 \text{ mol } \text{L}^{-1}} = 54.91 \text{ mL}$	
	$c(\text{OCI}^{-})_{\text{equivalence}} = \frac{4.865 \times 10^{-3} \text{ mol}}{(30.00 + 54.91)/1000 \text{ L}} = 0.05730 \text{ mol } \text{L}^{-1}$	
	$\frac{10^{-14}}{10^{-7.53}} = \frac{\left[\text{OH}^{-}\right]^{2}}{0.05730 \text{ mol } \text{L}^{-1}}$	
	$[OH^{-}] = 1.3933 \times 10^{-4} \text{ mol } L^{-1}$	
	$pH_{equivalence} = 14\log(1.3933 \times 10^{-4} \text{ mol } \text{L}^{-1}) = 10.14$	
	$pH_{half equivalence} = pK_a = 7.53$	
	$[OH^{-}]_{\text{past equivalence}} = 0.0886 \text{ mol } L^{-1} \times \frac{10 \text{ mL}}{94.91 \text{ mL}} = 0.00934 \text{ mol } L^{-1}$	
	$pH_{past \ equivalence} = 14 - log(0.00934 \ mol \ L^{-1}) = 11.97$	

(ii)	The point of intersection is at 30.88 mL. This is in the buffer region on the weak acid–strong base titration.		
	$n(\text{NaOH}) = cV = 0.0886 \text{ mol } \text{L}^{-1} \times 0.03088 \text{ L} = 2.736 \times 10^{-3} \text{ mol}$		
	$n(\text{HOCl}) = 4.865 \times 10^{-3} \text{ mol} - 2.736 \times 10^{-3} \text{ mol} = 2.129 \times 10^{-3} \text{ mol}$		
	$n(\text{OCl}^-) = 2.736 \times 10^{-3} \text{ mol}$		
	$pH = 7.53 + \log\left(\frac{2.2736 \times 10^{-3}}{2.129 \times 10^{-3}}\right) = 7.64$		
	OR		
	$10^{-7.53} = \frac{2.736 \times 10^{-3} \text{ mol} \times \left[\text{H}_{3}\text{O}^{+}\right]}{2.129 \times 10^{-3} \text{ mol}}$		
	$[H_{3}O^{+}] = 2.291 \times 10^{-8} \text{ mol } L^{-1}$		
	pH = 7.64		

Cut Scores

Scholarship	Outstanding Scholarship
17 – 25	26 – 32