Assessment Schedule - 2023

Scholarship Chemistry (93102)

Evidence Statement

Q	Evidence	Scholarship Not Awarded	Scholarship	Outstanding Scholarship
ONE (a)(i) (ii)	$\begin{aligned} & c\left(\mathrm{I}^{-}\right)=0.00167 \mathrm{~mol} \mathrm{~L}^{-1} \times \frac{0.025 \mathrm{~L}}{0.060 \mathrm{~L}}=6.9583 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} \\ & c\left(\mathrm{~Pb}^{2+}\right)=0.0225 \mathrm{~mol} \mathrm{~L}^{-1} \times \frac{0.035 \mathrm{~L}}{0.060 \mathrm{~L}}=1.3125 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-1} \\ & c\left(\mathrm{Ag}^{+}\right)=0.0143 \mathrm{~mol} \mathrm{~L}^{-1} \times \frac{0.035 \mathrm{~L}}{0.060 \mathrm{~L}}=8.3416 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \\ & Q\left(\mathrm{PbI}_{2}\right)=6.35 \times 10^{-9} \end{aligned}$ No precipitate will be observed in the first beaker. OR If the assumption is made that $\left[\mathrm{OH}^{-}\right]=10^{-7}$ in the mixture, then $Q\left(\mathrm{~Pb}(\mathrm{OH})_{2}\right)=$ 1.31×10^{-16} As $Q>K_{\mathrm{s}}\left(\mathrm{Pb}(\mathrm{OH})_{2}\right)$ and a precipitate of $\mathrm{Pb}(\mathrm{OH})_{2}$ will form in the first beaker, $Q(\mathrm{AgI})=5.80 \times 10^{-6}$ A yellow precipitate will be observed in the second beaker. If $\left[\mathrm{OH}^{-}\right]=10^{-7}$ in water, then $Q\left(\mathrm{~Pb}(\mathrm{OH})_{2}\right)=2.25 \times 10^{-16}$ If only distilled water is used instead of dilute nitric acid, then $\left[\mathrm{OH}^{-}\right]$will be close to 10^{-7}, and a precipitate of $\mathrm{Pb}(\mathrm{OH})_{2}$ will be possible. $Q>K_{s}\left(\mathrm{~Pb}(\mathrm{OH})_{2}\right)$. The use of dilute nitric acid lowers $\left[\mathrm{OH}^{-}\right]$, and thus prevents the formation of a precipitate in the $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ solution.	Any of the following: - Calculates Q value. - Compares Q to K_{s} to justify one beaker observation. - Explains acidification of lead(II) nitrate solution. - Identifies Co^{3+} ions as catalyst. - Explains temperature effects on rate. - Draws correct Lewis diagram. - Assigns correct bond angles to molecular shape. Explains bond angles for one shape.	A range of the following: - Calculates Q values and compares to K_{s} values to justify beaker observations, but with limited justification of acidification of lead(II) nitrate solution. - Discusses the role of Co^{3+} ions and temperature in increasing the rate of reaction for the demonstration, with some links to particle collision theory. - Draws correct Lewis diagrams, with associated bond angles and shapes, for two of the three ions, and explains the bond angles in one shape.	A range of the following: - Correctly calculates Q values and compares to K_{s} values to justify beaker observations, and fully explains why acidification of lead(II) nitrate solution is required. - Comprehensively discusses the role of Co^{3+} ions as a catalyst and elaborates on the temperature requirements with clear references to particle collision theory. - Draws correct Lewis diagrams for all three ions, proposes logical shapes and bond angles, and explains axial and equatorial bond angles for one shape.

(b)	When the temperature is increased, this increases the kinetic energy of the particles so that there are more collisions per second of sufficient energy for reaction to occur. The Co^{3+} ions act as a catalyst. The catalyst makes available an alternative pathway for the reaction to occur, with a lower activation energy requirement. The combination of heating and use of a catalyst increases the number of successful collisions per second between the reactant particles to a rate that enables the demonstration to work. If either of these two conditions are not met, either by not forming the Co^{3+} catalyst, or not heating to the required temperature, then there will not be a sufficient enough number of successful reactant particle collisions per second occurring for the demonstration to go to plan.			
(c)(i)				
(ii)	$\mathrm{ZrFs}_{5}{ }^{-}$is trigonal bipyramidal. Three regions of electron density around the equatorial plane will be distributed equally with bond angles of 120°. There will be bond angles of 90° between the equatorial and axial planes. $\mathrm{ZrF}_{6}{ }^{2-}$ is octahedral. Four regions of electron density around the equatorial plane will be distributed equally with bond angles of 90°. There will be bond angles of 90° between the equatorial and axial planes. $\mathrm{ZrF}_{7}{ }^{3-}$ is pentagonal bipyramidal. Five regions of electron density around the equatorial plane will be distributed equally with bond angles of $\sim 72^{\circ}$. There will be bond angles of 90° between the equatorial and axial planes.			

(c)(i) $c\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)$initial $=10^{-0.50}=0.31622 \mathrm{~mol} \mathrm{~L}^{-1} \times 0.100 \mathrm{~L}=0.03162 \mathrm{~mol}$
$c\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)$after reaction $\quad=10^{-1.21}=0.061660 \mathrm{~mol} \mathrm{~L}^{-1} \times 0.100 \mathrm{~L}=0.006166 \mathrm{~mol}$
$n\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)$consumed $\quad=0.03162 \mathrm{~mol}-0.006166 \mathrm{~mol}$
$=0.02545 \mathrm{~mol}$
$=n\left(\mathrm{NH}_{3}\right)$
$n($ reaction $)=\frac{n\left(\mathrm{NH}_{3}\right)}{2}=\frac{0.02545 \mathrm{~mol}}{2}=0.01273 \mathrm{~mol}$
$\Delta H=\frac{-q}{n}$
$q=0.01273 \mathrm{~mol} \times 90.66 \mathrm{~kJ} \mathrm{~mol}^{-1}=-1.154 \mathrm{~kJ}$
$q=m c \Delta T$
$-1154 \mathrm{~J}=90.72 \mathrm{~g} \times 0.753 \mathrm{~J}^{\circ} \mathrm{C}^{-1} \mathrm{~g}^{-1} \times \Delta T$
$\Delta T=\frac{-1154 \mathrm{~J}}{90.72 \mathrm{~g} \times 0.753 \mathrm{~J}^{\circ} \mathrm{C}^{-1} \mathrm{~g}^{-1}}$
$\Delta T=-16.89{ }^{\circ} \mathrm{C}$
(ii) The enthalpy change is positive, indicating an endothermic reaction, with heat energy transferred from the surroundings, resulting in a decrease in the entropy of the surroundings.
There is a significant difference in state between the solid reactants and the gaseous, liquid, and aqueous products. These changes result in an increase in the entropy of the system, which is favourable.
The reaction is spontaneous, thus the positive entropy change for the system must outweigh the negative entropy change for the surroundings.

Q	Evidence	Scholarship Not Awarded	Scholarship	Outstanding Scholarship
THREE (a)	 Synthesis of W: Synthesis of $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$: X: Y and Z (enantiomers):	Any of the following: - Compound \mathbf{F} identified. - Compound G identified. - Scheme attempted with some correct reagents / compounds. - Concentration of thiosulfate solution. - Calculates mass of Vitamin C in original drink powder. - Vitamin C after 24 hours calculated with errors. - Balanced redox half and full equations for permanganate reaction. - Correct oxidant and reductant for one reaction. - Assigns correct oxidation numbers to elements.	A range of the following: - Determines the identity of compounds \mathbf{F} and \mathbf{G} and proposes reaction schemes for the synthesis of two of compounds $\mathbf{W}-\mathbf{Z}$. - Calculates the percentage of Vitamin C remaining after 24 hours with minor error. - Correctly identifies the oxidant and reductant in one oxidationreduction reaction, with clear links to oxidation number changes and balanced half and full equations.	A range of the following: - Correctly determines the identity of compounds \mathbf{F} and \mathbf{G} and proposes a set of reaction schemes, with correct reagents, that would enable synthesis of compounds $\mathbf{W}-\mathbf{Z}$. - Correctly calculates the concentration of sodium thiosulfate, the mass of Vitamin C in the original drink powder, and the percentage of Vitamin C remaining after 24 hours. - Justifies the oxidants and reductants in both oxidationreduction reactions with clear links to oxidation number changes and balanced half and full equations.

(b)(i)	Yes, the nutritional information was accurate. $\begin{array}{ll} n\left(\mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}\right)_{24 \mathrm{hr}} & =2.7213 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \times 0.01835 \mathrm{~L} \\ & =4.9935 \times 10^{-5} \mathrm{~mol} \\ n\left(\mathrm{I}_{2}\right)_{24 \mathrm{hr}} & =\frac{4.9935 \times 10^{-5} \mathrm{~mol}}{2} \\ & =2.49677 \times 10^{-5} \mathrm{~mol} \\ n\left(\mathrm{I}_{2}\right)_{\text {reacted }} & =3.700 \times 10^{-5} \mathrm{~mol}-2.49677 \times 10^{-5} \mathrm{~mol} \\ n(\text { ascorbic acid })_{20 \mathrm{~mL}} & =1.2032 \times 10^{-5} \mathrm{~mol} \\ & =10^{-5} \mathrm{~mol} \end{array}$

$\%(\text { ascorbic acid })_{\text {remaining }}=\frac{1.2032 \times 10^{-5} \mathrm{~mol}}{1.5093 \times 10^{-5} \mathrm{~mol}} \times 100 \%$
$=79.7 \%$
(ii)
$12 \mathrm{H}^{+}+10 \mathrm{e}^{-}+2 \mathrm{IO}_{3}^{-} \rightarrow \mathrm{I}_{2}+6 \mathrm{H}_{2} \mathrm{O}$
$2 \mathrm{I}^{-} \rightarrow \mathrm{I}_{2}+2 \mathrm{e}^{-}$
$6 \mathrm{H}^{+}+5 \mathrm{I}^{-}+\mathrm{IO}_{3}^{-} \rightarrow 3 \mathrm{I}_{2}+3 \mathrm{H}_{2} \mathrm{O}$
The oxidant is $\mathrm{IO}_{3}{ }^{-}$. The oxidation number of I is decreasing from $+5{\mathrm{in} \mathrm{IO}_{3}{ }^{-} \text {to } 0 \text { in } \mathrm{I}_{2} \text {, indicating a gain }}^{\text {, }}$ of electrons and reduction. $\mathrm{As}_{\mathrm{IO}_{3}{ }^{-} \text {is reduced, it must be the oxidant in the reaction. }}^{\text {it }}$

The reductant is I^{-}. The oxidation number of I is increasing from -1 in I^{-}to 0 in I_{2}, indicating a loss of electrons and oxidation. As I^{-}is oxidised, it must be the reductant in the reaction.
$\mathrm{MnO}_{4}^{-}+4 \mathrm{H}^{+}+3 \mathrm{e}^{-} \rightarrow \mathrm{MnO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{Mn}^{2+}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{e}^{-}+\mathrm{MnO}_{2}+4 \mathrm{H}^{+}$

$$
2 \mathrm{MnO}_{4}^{-}+3 \mathrm{Mn}^{2+}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 5 \mathrm{MnO}_{2}+4 \mathrm{H}^{+}
$$

The oxidant is MnO_{4}^{-}. The oxidation number of Mn is decreasing from +7 in MnO_{4}^{-}to +4 in MnO_{2}, indicating a gain of electrons and reduction. As $\mathrm{MnO}_{4}{ }^{-}$is reduced, it must be the oxidant in the reaction. The reductant is Mn^{2+}. The oxidation number of Mn is increasing from +2 in Mn^{2+} to +4 in MnO_{2}, indicating a loss of electrons and oxidation. As Mn^{2+} is oxidised, it must be the reductant in the reaction.

Q	Evidence	Scholarship Not Awarded	Scholarship	Outstanding Scholarship
FOUR (a)(i) (ii)	The first ionisation enthalpy is the enthalpy change that occurs during the removal of one mole of the least tightly bound electrons from one mole of gaseous atoms. Nitrogen and oxygen are both located in period 2, with valence electrons in the same energy level. Nitrogen is a group 15 element with seven protons, two inner shell electrons, five valence electrons, and the electron arrangement $1 \mathrm{~s}^{2}, 2 \mathrm{~s}^{2}, 2 \mathrm{p}^{3}$. Oxygen is a group 16 element with eight protons, two inner shell electrons, six valence electrons, and the electron arrangement $1 \mathrm{~s}^{2}, 2 \mathrm{~s}^{2}$, $2 \mathrm{p}^{4}$. The outermost electrons for both atoms are in $2 p$ orbitals, with oxygen atoms having one more electron than nitrogen atoms, causing greater electron-electron repulsion between electrons in those orbitals. Oxygen atoms also have one additional proton in the nucleus, causing a greater nuclear charge, and as both have the same degree of shielding by the inner shell electrons, oxygen atoms have a greater effective nuclear charge. Oxygen atoms have a lower first ionisation enthalpy than nitrogen atoms. In nitrogen atoms, all three 2 p orbital electrons are in individual orbitals, while in oxygen atoms, two valence electrons are paired in a 2 p orbital. This increased electron-electron repulsion within the paired orbital means that they are in a higher energy position, and thus less energy is required to remove one from the atom. While there is a greater attraction by the nucleus on all the $2 p$ electrons, the electron-electron repulsion within the same orbital is the dominant factor in the first ionisation energies of these elements. Nitride ions, N^{3-}, oxide ions, O^{2-}, and neon atoms, Ne , are all isoelectric, with 10 electrons and the same electron arrangement of $1 \mathrm{~s}^{2}, 2 \mathrm{~s}^{2}, 2 \mathrm{p}^{6}$. Neon atoms ions have 10 protons, while oxide ions comparatively have only 8 protons, and nitride ions have only 7 protons. As neon atoms have the greatest number of protons, the nuclear charge acting on the valence electrons is greatest, drawing them closest to the nucleus of the atom, and yielding the smallest radii. Similarly oxide ions will be smaller than nitride ions, due to having a higher nuclear charge attracting the electrons closer to the nucleus of the ion.	Any of the following: - Defines first ionisation enthalpy. - Describes link between protons, electrons, and ionisation enthalpy. - Electron arrangements for nitrogen and oxygen. - Radii for two particles compared. - Cell potential calculation for one beaker correct. - Colour for all three beakers correct. - Calculates points on either titration curve.	A range of the following: - Justifies the first ionisation enthalpies of nitrogen and oxygen, with limited comparison of the radii of the three particles. - Completes cell potential calculations to determine the final oxidation state of vanadium, and colour, for two solutions. - Completes calculations to draw one titration curve correctly.	A range of the following: - Comprehensively justifies the first ionisation enthalpies for nitrogen and oxygen, and compares the radii of $\mathrm{N}^{3-}, \mathrm{O}^{2-}$, and Ne . - Determines the correct colour and oxidation number of vanadium in the three final solutions, with support of cell potential calculations. - Draws the correct shape for both titration curves, with key values correctly calculated, with the pH at the point where the two curves intersect correctly determined.

With Zinc:

E° cell1 $\left(\mathrm{VO}_{2}{ }^{+}\right.$reduced to $\left.\mathrm{VO}^{2+}\right)=+1.00--0.76=+1.76 \mathrm{~V}-$ positive so spontaneous
E° cell2 $\left(\mathrm{VO}^{2+}\right.$ reduced to $\left.\mathrm{V}^{3+}\right)=+0.34--0.76=+1.10 \mathrm{~V}-$ positive so spontaneous
$E^{\circ}{ }_{\text {cell3 }}\left(\mathrm{V}^{3+}\right.$ reduced to $\left.\mathrm{V}^{2+}\right)=-0.26--0.76=+0.50 \mathrm{~V}-$ positive so spontaneous
Zn can reduce VO_{2}^{+}to V^{2+} meaning the final colour is violet $\left(\mathrm{V}^{2+}\right)$, and the final oxidation number is +2 .

With Tin:

E° cell1 $\left(\mathrm{VO}_{2}{ }^{+}\right.$reduced to $\left.\mathrm{VO}^{2+}\right)=+1.00--0.14=+1.14 \mathrm{~V}-$ positive so spontaneous E° cell2 $\left(\mathrm{VO}^{2+}\right.$ reduced to $\left.\mathrm{V}^{3+}\right)=+0.34--0.14=+0.48 \mathrm{~V}-$ positive so spontaneous
$E^{\circ}{ }_{\text {cell3 }}\left(\mathrm{V}^{3+}\right.$ reduced to $\left.\mathrm{V}^{2+}\right)=-0.26-0.14=-0.12 \mathrm{~V}-$ negative so not spontaneous
Sn can reduce $\mathrm{VO}_{2}{ }^{+}$to V^{3+} meaning the final colour is green $\left(\mathrm{V}^{3+}\right)$, and the final oxidation number is +3 .

With Silver:
E° cell1 $\left(\mathrm{VO}_{2}^{+}\right.$reduced to $\left.\mathrm{VO}^{2+}\right)=+1.00-+0.80=+0.20 \mathrm{~V}-$ positive so spontaneous
E° cell2 $\left(\mathrm{VO}^{2+}\right.$ reduced to $\left.\mathrm{V}^{3+}\right)=+0.34-+0.80=-0.46 \mathrm{~V}-$ negative so not spontaneous
Ag can reduce $\mathrm{VO}_{2}{ }^{+}$to VO^{2+} meaning the final colour is blue $\left(\mathrm{VO}^{2+}\right)$, and the final oxidation number is +4 .

$$
\begin{aligned}
& \text { (c)(i) } \\
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \quad=10^{-1.04}=\mathbf{0 . 0 9 1 2 0} \mathbf{~ m o l ~ L}^{-1}} \\
& n\left(\mathrm{H}_{3} \mathrm{O}^{+}\right) \quad=0.09120 \mathrm{~mol} \mathrm{~L}^{-1} \times 0.0300 \mathrm{~L}=2.736 \times 10^{-3} \mathrm{~mol}=n(\mathrm{NaOH}) \\
& V(\mathrm{NaOH})_{\text {equivalence }}=n /[\mathrm{NaOH}]=\frac{2.736 \times 10^{-5} \mathrm{~mol}}{0.0886 \mathrm{~mol} \mathrm{~L}^{-1}}=\mathbf{3 0 . 8 8} \mathbf{~ m L} \\
& {\left[\mathrm{OH}^{-}\right]_{\text {past equivalence }}=0.0886 \mathrm{~mol} \mathrm{~L}^{-1} \times \frac{10 \mathrm{~mL}}{70.88 \mathrm{~mL}}=0.0125 \mathrm{~mol} \mathrm{~L}^{-1}} \\
& \mathrm{pH}_{\text {past equivalence }} \quad=14-\log \left(0.0125 \mathrm{~mol} \mathrm{~L}^{-1}\right)=\mathbf{1 2 . 1 0} \\
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \quad=10^{-4.16}=\mathbf{6 . 9 1 8} \times \mathbf{1 0}^{-5} \mathbf{~ m o l ~ L}^{-1}} \\
& 10^{-7.53}=\frac{\left(6.918 \times 10^{-5}\right)^{2}}{[\mathrm{HOCl}]} \\
& \text { [} \mathrm{HOCl} \text {] } \\
& =0.1622 \mathrm{~mol} \mathrm{~L}^{-1} \\
& n\left(\mathrm{H}_{3} \mathrm{O}^{+}\right) \quad=0.1622 \mathrm{~mol} \mathrm{~L}^{-1} \times 0.0300 \mathrm{~L}=4.865 \times 10^{-3} \mathrm{~mol} \\
& V(\mathrm{NaOH})_{\text {equivalence }}=\frac{n(\mathrm{NaOH})}{c(\mathrm{NaOH})}=\frac{4.865 \times 10^{-3} \mathrm{~mol}}{0.0886 \mathrm{~mol} \mathrm{~L}^{-1}}=\mathbf{5 4 . 9 1} \mathbf{~ m L} \\
& c\left(\mathrm{OCl}^{-}\right)_{\text {equivalence }}=\frac{4.865 \times 10^{-3} \mathrm{~mol}}{(30.00+54.91) / 1000 \mathrm{~L}}=0.05730 \mathrm{~mol} \mathrm{~L}^{-1} \\
& \frac{10^{-14}}{10^{-7.53}}=\frac{\left[\mathrm{OH}^{-}\right]^{2}}{0.05730 \mathrm{~mol} \mathrm{~L}^{-1}} \\
& {\left[\mathrm{OH}^{-}\right]=1.3933 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}} \\
& \mathrm{pH}_{\text {equivalence }}=14--\log \left(1.3933 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}\right)=\mathbf{1 0 . 1 4} \\
& \mathrm{pH} \mathrm{half}_{\text {equivalence }}=\mathrm{p} K_{\mathrm{a}}=\mathbf{7 . 5 3} \\
& {\left[\mathrm{OH}^{-}\right]_{\text {past equivalence }}=0.0886 \mathrm{~mol} \mathrm{~L}^{-1} \times \frac{10 \mathrm{~mL}}{94.91 \mathrm{~mL}}=0.00934 \mathrm{~mol} \mathrm{~L}^{-1}} \\
& \mathrm{pH}_{\text {pastequivalence }}=14-\log \left(0.00934 \mathrm{~mol} \mathrm{~L}^{-1}\right)=\mathbf{1 1 . 9 7}
\end{aligned}
$$

Scholarship Chemistry (93102) 2023 — page 12 of 13

The point of intersection is at 30.88 mL . This is in the buffer region on the weak acid-strong base titration.
$n(\mathrm{NaOH})=c V=0.0886 \mathrm{~mol} \mathrm{~L}^{-1} \times 0.03088 \mathrm{~L}=2.736 \times 10^{-3} \mathrm{~mol}$ $n(\mathrm{HOCl})=4.865 \times 10^{-3} \mathrm{~mol}-2.736 \times 10^{-3} \mathrm{~mol}=2.129 \times 10^{-3} \mathrm{~mol}$
$n\left(\mathrm{OCl}^{-}\right)=2.736 \times 10^{-3} \mathrm{~mol}$
$\mathrm{pH}=7.53+\log \left(\frac{2.2736 \times 10^{-3}}{2.129 \times 10^{-3}}\right)=7.64$
OR
$10^{-7.53}=\frac{2.736 \times 10^{-3} \mathrm{~mol} \times\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{2.129 \times 10^{-3} \mathrm{~mol}}$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=2.291 \times 10^{-8} \mathrm{~mol} \mathrm{~L}^{-1}$
$\mathrm{pH}=\mathbf{7 . 6 4}$

Cut Scores

Scholarship	Outstanding Scholarship
$17-25$	$26-32$

