Assessment Schedule – 2020

Chemistry: Demonstrate understanding of the properties of organic compounds (91391)

Evidence Statement

Q	Evidence		Achievement	Merit	Excellence
ONE (a)(i)	Compound IUPAC (systematic) name A 3-chloropropanamide B pentan-2-one C methyl propanoate D 2-methylbutanal	Structural Formula $CH_{2}-CH_{2}-C \stackrel{\bigcirc}{\sim} O$ CI CI $CH_{3}-C-CH_{2}-CH_{2}-CH_{3}$ $CH_{3}-CH_{2}-C-C-CH_{3}$ $CH_{3}-CH_{2}-C-C-CH_{3}$	• TWO correct.		
(ii)	Add blue Benedict's solution to compound D and warm. A (brick) red solid/precipitate will form, (as the Cu²+ ions are reduced to Cu¹+). This happens because compound D is an aldehyde and has been oxidised to a carboxylic acid: CH3 – CH2 – CH(CH3) – COOH OR Add Tollens' reagent to compound D and warm. Solid silver will form on the walls of the test tube, (as the silver ion from the Tollens' reagent is reduced to silver atoms). This happens because compound D is an aldehyde and is oxidised to a carboxylic acid (structure given above). Note: Can also use either acidified potassium dichromate (orange to green colour change) or acidified potassium permanganate (purple to colourless colour change). No change will occur with compound B since ketones cannot be further oxidised.		Identifies a correct reagent. Provides correct observations. OR Correct reaction type. OR Correct product.	Fully explains a chemical test to distinguish B and D.	

(b)	CH ₃ -CH ₂ -	CH ₂ -CH ₂ Br KOH(aq) CH ₂ -CH ₂ OH Cr ₂ O ₇ ²⁻ / H* or MnO ₄ - / H* CH ₂ -COOH SOCI ₂ CH ₂ -COCI	ONE step of reaction scheme correct.	TWO steps of reaction scheme correct.	Complete reaction scheme with all organic products, reagents, and any conditions correct.
(c)	Organic molecule	Structural formula	ONE structure correct. OR TWO structures correct	TWO structures correct. OR THREE structures correct	ALL structures correct.
	S	CH ₃ CH ₂ =C-CH-CH ₃ OH	following on from incorrect S.	following on from incorrect S.	
	Т	CH_{3} $CH_{2} = C - C - CH_{3}$ O			
	U	CH ₃ I CH ₂ -CH-CH-CH ₃ I OH OH			
	V	CH ₃ I CH ₃ - C - CH - CH ₃ I I OH OH			

NCEA Level 3 Chemistry (91391) 2020 — page 3 of 7

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	1a	2a	3a	4a	2m	3m	2e, but allow minor error / omission in one question	2e

Q	Evidence	Achievement	Merit	Excellence
TWO (a)(i)	OH OH CH ₂ Br BrH ₂ C = CH ₃	Recognises tetrahedral arrangement about asymmetric carbon atom.	Both 3-D images drawn correctly, identifies asymmetric carbon, and explains how enantiomers could be distinguished.	
(ii) (iii)	1-bromopropan-2-ol exists as enantiomers as it has an asymmetric carbon atom, i.e. a carbon which is attached to four different atoms or groups of atoms. In this case, carbon 2 is the asymmetric carbon. (This makes the molecule chiral.) The enantiomers can be distinguished since they rotate plane polarised light in opposite direction.	Identifies presence of asymmetric carbon. OR Recognises an appropriate property to distinguish enantiomers.		
(b)	Add water to all three liquids. Only butanoyl chloride will vigorously react and produce steamy fumes of HCl(g). This is a substitution/hydrolysis reaction and will form butanoic acid, CH ₃ –CH ₂ –COOH. Add sodium carbonate solution to the remaining two liquids. Only butanoic acid will produce bubbles of CO ₂ (g). This is an acid-base reaction and produces sodium butanoate, CH ₃ –CH ₂ –COO [¬] Na ⁺ . Add acidified potassium permanganate to the remaining liquid. The butan-2-ol will turn the purple potassium permanganate colourless. This is an oxidation reaction and produces butanone, CH ₃ –CH ₂ –CO–CH ₃ .	States TWO observations. Identifies TWO of the reaction types occurring. OR One correct structural formula of an organic product.	Identifies correct tests and observations for TWO liquids plus ONE correct reaction type and ONE correct structural formula of an organic product.	Develops a valid procedure to identify all THREE liquids including correct tests, observations, reaction types, and at least TWO correct structural formulae of organic products.

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	1a	2a	3a	4a	2m	3m	2e, but allow minor error / omission in one part.	2e

Q	Evidence	Achievement	Merit	Excellence
THREE (a)	O	One peptide (amide) bond circled.		
	$\begin{array}{c} O \\ H_{2}N-CH_{2}-C-N-CH-COOH \\ I & I \\ H & CH_{2}SH \\ \\ O \\ H_{2}N-CH-C-N-CH_{2}-COOH \\ I & I \\ CH_{2}SH & H \\ \end{array}$	ONE dipeptide correct OR TWO mostly correct with minor error	BOTH dipeptides correct.	
(ii)	In this hydrolysis reaction, water is used to break the larger organic molecule into smaller organic molecules. (In this reaction, the amide/peptide bond is broken). Hydrolysis occurs in both acidic and basic conditions (using an aqueous acid such as HCl or aqueous base such as NaOH). The rate of reaction for both can be increased by heating under reflux. Products from acidic hydrolysis Products from basic hydrolysis	Describes a hydrolysis reaction.	Explains the hydrolysis reaction, including reagents.	All FOUR correct structures from hydrolysis. AND Fully explains hydrolysis and requirements.
	†H ₃ N-CH-COOH	ONE structure correct.	TWO structures correct.	

(c)(i)	0	Correct ester linkage drawn.		
	$CH_2-O-\ddot{C}-(CH_2)_{14}-CH_3$		Correct structure.	
	0			
	CH-O-C-(CH ₂) ₁₄ -CH ₃			
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			Correct structure,
	$CH_2 - O - C - (CH_2)_{14} - CH_3$			explanation of condensation, and
(ii)	This is a condensation reaction because smaller organic molecules (glycerol and fatty acids) join together to make a larger organic	Describes a condensation	Explains condensation.	explanation of advantages of heating under reflux.
	molecule (triglyceride). In the process, water is eliminated. (One water molecule is eliminated for each ester linkage)	reaction	OR Explains ONE advantage	
()	and the control of th		of heating under reflux.	
(iii)	Heating under reflux is an advantage as it condenses volatile organic molecules that have turned into gases back into liquids. This allows the	States one advantage of		
	reaction to go to completion and ensures none of the reactants / products escape, thus increasing the yield of the product. This also	heating under reflux.		
	means the reaction can be heated without the risk of losing reactant /			
	product, so the rate of the reaction increases.			

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	1a	2a	3a	4a	3m	4m	2e, but allow minor error/omission in one part.	2e

Cut Scores

Not Achieved	Achievement	Achievement with Merit	Achievement with Excellence
0 – 8	9-13	14-19	20 – 24