Assessment Schedule - 2019

Chemistry: Demonstrate understanding of equilibrium principles in aqueous systems (91392)

Evidence Statement

Q	Evidence	Achievement	Merit	Excellence
ONE (a)(i) (ii) (iii) (iv)	$\mathrm{Zn}(\mathrm{OH})_{2} \rightleftharpoons \mathrm{Zn}^{2+}+2 \mathrm{OH}^{-}$ $K_{\mathrm{s}}=\left[\mathrm{Zn}^{2+}\right]\left[\mathrm{OH}^{-}\right]^{2}$ Let solubility be ' s ': $\begin{aligned} & {\left[\mathrm{Zn}^{2+}\right]=s} \\ & {\left[\mathrm{OH}^{-}\right]=2 s} \end{aligned}$ $K_{\mathrm{s}}=4 s^{3}$ $4 s^{3}=3.80 \times 10^{-17}$ $s=2.12 \times 10^{-6} \mathrm{~mol} \mathrm{~L}^{-1}$ $\left[\mathrm{Zn}^{2+}\right]=2.12 \times 10^{-6} \mathrm{~mol} \mathrm{~L}^{-1}$ $\left[\mathrm{OH}^{-}\right]=4.24 \times 10^{-6} \mathrm{~mol} \mathrm{~L}^{-1}$ $K_{\mathrm{s}}=\left[\mathrm{Zn}^{2+}\right]\left[\mathrm{OH}^{-}\right]^{2}$ $3.80 \times 10^{-17}=\left(\frac{0.210}{2}\right) \times\left[\mathrm{OH}^{-}\right]^{2}$ $\left[\mathrm{OH}^{-}\right]=1.90 \times 10^{-8} \mathrm{~mol} \mathrm{~L}^{-1}$ Note: $\frac{0.210}{2}$ due to dilution factor from adding two solutions together.	Correct equilibrium equation and K_{s} expression. Method correct for determining solubility. Recognises Zn^{2+} is the common ion. OR ONE step correct. E.g. correct substitution into K_{s} excluding dilution / 0.105.	Correct solubility of $\mathrm{Zn}(\mathrm{OH})_{2}$ calculated, including $\left[\mathrm{Zn}^{2+}\right]$ and $\left[\mathrm{OH}^{-}\right]$. Calculates $\left[\mathrm{OH}^{-}\right]$, but does not take into account the dilution factor.	Calculates correct $\left[\mathrm{OH}^{-}\right]$. Including sig fig and units
(b)	$\mathrm{Zn}(\mathrm{OH})_{2} \rightleftharpoons \mathrm{Zn}^{2+}+2 \mathrm{OH}^{-}$ When the OH^{-}ions are in excess, the Zn^{2+} ions can form a complex ion: $\mathrm{Zn}^{2+}+4 \mathrm{OH}^{-} \rightarrow\left[\mathrm{Zn}(\mathrm{OH})_{4}\right]^{2-}$ A decrease in $\left[\mathrm{Zn}^{2+}\right]$ will result in the forward reaction being favoured, to restore equilibrium / minimise the change. This causes more solid $\mathrm{Zn}(\mathrm{OH})_{2}$ to dissolve / the solubility of $\mathrm{Zn}(\mathrm{OH})_{2}$ increases / so that $\left[\mathrm{Zn}^{2+}\right]\left[\mathrm{OH}^{-}\right]$will again equal K_{s}.	Recognises solubility increases due to formation of complex ion.	Explains that formation of a complex ion will decrease $\left[\mathrm{Zn}^{2+}\right]$.	Fully explains, using equilibrium principles, how the solubility of the $\mathrm{Zn}(\mathrm{OH})_{2}$ increases when excess NaOH is added. Must include complex ion equation.

NCEA Level 3 Chemistry (91392) 2019 — page 2 of 6

(c)	$\begin{aligned} & {\left[\mathrm{Zn}^{2+}\right]=\frac{20}{50} \times 0.0242=9.68 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}} \\ & {\left[\mathrm{OH}^{-}\right]=\frac{30}{50} \times 1 \times 10^{-14} / 10^{-13.1}=0.0755 \mathrm{~mol} \mathrm{~L}^{-1}} \\ & \mathrm{IP}=\left[\mathrm{Zn}^{2+}\right]\left[\mathrm{OH}^{-}\right]^{2}=9.68 \times 10^{-3} \times(0.0755)^{2} \\ & \quad=5.52 \times 10^{-5} \quad\left(5.53 \times 10^{-5}\right) \end{aligned}$ Since IP $>K_{\mathrm{s}}$, a precipitate of $\mathrm{Zn}(\mathrm{OH})_{2}$ will form.	Correct substitution into Q_{s} (IP) expression. OR Correct $\left[\mathrm{Zn}^{2+}\right]$ or $\left[\mathrm{OH}^{-}\right]$.	Correct process to determine Q_{s} and compare with K_{s}.	Correct calculation and comparison with K_{s} to determine whether $\mathrm{Zn}(\mathrm{OH})_{2}$ will form a precipitate.

NØ	N1	$\mathbf{N 2}$	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	1 a	2 a	3 a	4 a	2 m	3 m	1 e	

Q	Evidence	Achievement	Merit	Excellence
TWO (a)(i) (ii)	$\mathrm{Na}^{+}, \mathrm{HCOO}^{-}, \mathrm{HCOOH}, \mathrm{OH}^{-}, \mathrm{H}_{3} \mathrm{O}^{+}$ After 12.5 mL NaOH has been added, it is halfway to the equivalence point. This means that $[\mathrm{HCOOH}]=\left[\mathrm{HCOO}^{-}\right]$. Therefore pH equals $\mathrm{p} K_{\mathrm{a}}$.	THREE species identified. $\begin{aligned} & {[\mathrm{HCOOH}]=\left[\mathrm{HCOO}^{-}\right]} \\ & \mathrm{OR} \\ & \mathrm{pH}=\mathrm{p} K_{\mathrm{a}} \end{aligned}$	$\begin{aligned} & {[\mathrm{HCOOH}]=\left[\mathrm{HCOO}^{-}\right]} \\ & \text {Therefore } \mathrm{pH}=\mathrm{p} K_{\mathrm{a}} \text {. } \end{aligned}$	
(b)(i) (ii)	Tick cresol red. Indicators change colour at a $\mathrm{pH} \pm 1$ of the $\mathrm{pK}_{\mathrm{a}} /$ near the pK_{a}. Therefore, cresol red should be used as it will change near the equivalence point/steepest part of the curve, whereas thymol blue and bromocresol green will change before the equivalence point/steepest part of the curve. $\begin{aligned} & {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\sqrt{\frac{K_{\mathrm{a}} \times K_{\mathrm{w}}}{\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}\right]}}} \\ & {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\sqrt{\frac{1.82 \times 10^{-4} \times 1 \times 10^{-14}}{0.0778}}} \\ & {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=4.84 \times 10^{-9} \mathrm{~mol} \mathrm{~L}^{-1}} \\ & \mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=8.32 \end{aligned}$ OR For this solution, $\mathrm{HCOO}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HCOOH}+\mathrm{OH}^{-}$	Identifies cresol red. OR Recognises an indicator is chosen to change colour over the vertical section of the curve / at the equivalence point. Correct process for determining pH at equivalence point. OR One correct step.	Explanation with reference to the $\mathrm{p} K_{\mathrm{a}}$ of why cresol red is the appropriate indicator whereas the other two indicators are not. pH calculated at equivalence point with incorrect dilution.	Full explanation for indicator choice . AND pH at equivalence point.
(c)	After 28 mL NaOH added: $\begin{aligned} & n(\text { unreacted } \mathrm{NaOH})=c V=0.140 \times 0.003=4.2 \times 10^{-4} \mathrm{~mol} \\ & c(\mathrm{NaOH})=\frac{n}{V}=\frac{4.2 \times 10^{-4}}{0.048}=8.75 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \\ & {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\frac{1 \times 10^{-14}}{8.75 \times 10^{-3}}=1.14 \times 10^{-12} \mathrm{~mol} \mathrm{~L}^{-1}} \\ & \mathrm{pH}=-\log 1.14 \times 10^{-12}=11.9 \end{aligned}$	Correct $n(\mathrm{NaOH})$. OR One correct step.	Correct process but one error in calculation.	Correct pH.

NCEA Level 3 Chemistry (91392) 2019 — page 4 of 6

NØ	$\mathbf{N 1}$	$\mathbf{N 2}$	$\mathbf{A 3}$	A4	M5	M6	E7	E8
No response; no relevant evidence.	1 a	2 a	3 a	4 a	2 m	3 m	1 e	

NCEA Level 3 Chemistry (91392) 2019 — page 5 of 6

Q	Evidence	Achievement	Merit	Excellence
THREE (a)(i)	$\mathrm{CH}_{3} \mathrm{COOH}$ has the smaller $\mathrm{p} K_{\mathrm{a}} /$ larger K_{a}, so it will be a stronger acid than $\mathrm{NH}_{4}{ }^{+}$. This means $\mathrm{CH}_{3} \mathrm{COOH}$ will dissociate to a greater extent to produce a higher $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$than $\mathrm{NH}_{4}{ }^{+}$, so $\mathrm{CH}_{3} \mathrm{COOH}$ will have a lower pH .	Recognises $\mathrm{p} K_{\mathrm{a}}$ is a measure of the extent of dissociation of a weak acid.	Links magnitude of $\mathrm{p} K_{\mathrm{a}}$ (or K_{a}) to degree of dissociation, $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and pH . OR	Full explanation of the pH and electrical conductivity of BOTH solutions, i.e. links degree of dissociation to BOTH $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and pH AND [ions] and electrical
(ii)	The electrical conductivity of a solution depends upon [ions]. $\mathrm{NH}_{4} \mathrm{Cl}$ is an acidic salt, so it completely dissociates / dissolves to produce a relatively high $\left[\mathrm{NH}_{4}{ }^{+}\right]$and $\left[\mathrm{Cl}^{-}\right]$. This makes $\mathrm{NH}_{4} \mathrm{Cl}$ a good electrical conductor.	Recognises electrical conductivity in a solution requires ions.	Links the [ions] to the electrical conductivity of BOTH solutions.	conductivity, including supporting equations.
	$\mathrm{NH}_{4} \mathrm{Cl} \rightarrow \mathrm{NH}_{4}^{+}+\mathrm{Cl}^{-}$			
	However, $\mathrm{CH}_{3} \mathrm{COOH}$ is a weak acid and only partially dissociates to produce a relatively low $\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]$and $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$. This makes $\mathrm{CH}_{3} \mathrm{COOH}$ a poorer electrical conductor than $\mathrm{NH}_{4} \mathrm{Cl}$. $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$			
(iii)	$\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$			
	$K_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}$	Correct process for determining [$\left.\mathrm{CH}_{3} \mathrm{COOH}\right]$. (correct substitution		
	$10^{-4.76}=\frac{\left(1.78 \times 10^{-3}\right)^{2}}{\Gamma}$	into formula) OR		
	$10=\left[\mathrm{CH}_{3} \mathrm{COOH}\right]$		Correct [$\left.\mathrm{CH}_{3} \mathrm{COOH}\right]$.	
	$\left[\mathrm{CH}_{3} \mathrm{COOH}\right]=0.182 \mathrm{~mol} \mathrm{~L}^{-1}$			

(b)(i)	$\begin{aligned} & \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \\ & K_{\mathrm{a}}=\frac{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]} \\ & 10^{-4.76}=2 \times \frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{5} \\ & {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=4.34 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1}} \\ & \mathrm{pH}=-\log 4.34 \times 10^{-5}=4.36 \end{aligned}$	Correct process for determining pH . OR One correct step.	Correct pH.	
(ii)	$\left[\mathrm{CH}_{3} \mathrm{COOH}\right]>\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right] / \mathrm{pH}<\mathrm{pK}_{\mathrm{a}}$ Therefore the buffer solution is more effective at neutralising strong base: $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{OH}^{-} \rightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O}$	Equation. OR $\left[\mathrm{CH}_{3} \mathrm{COOH}\right]>\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]$	Links ratio of $\left[\mathrm{CH}_{3} \mathrm{COOH}\right]:\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]$ to buffer effectiveness, including equation.	Full explanation of buffer behaviour for (ii) and (iii).
(iii)	When water is added, the ratio of $\mathrm{CH}_{3} \mathrm{COOH}$ to $\mathrm{CH}_{3} \mathrm{COO}^{-}$is unchanged, so the pH of the buffer solution is unaffected.	Recognises pH remains unchanged.	Explains effect of dilution on pH in terms of ratio between $\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{CH}_{3} \mathrm{COO}^{-}$.	

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	1a	2a	3a	4 a	2m	3 m	1 e	2 e

Cut Scores

Not Achieved	Achievement	Achievement with Merit	Achievement with Excellence
$0-6$	$7-13$	$14-19$	$20-24$

