Assessment Schedule - 2006

Chemistry: Describe properties of aqueous systems (90700)

Evidence Statement

Q	Evidence	Achievement	Achievement with Merit	Achievement with Excellence
1(a)	(i) C (ii) A (iii) D	Two out of three correct		
	Reasons: (i) Strong acid – no acid molecules, HA, are present so acid must have completely dissociated in solution. Dilute – only a small number of solute particles compared to number present in B.	Evidence of understanding of relationship between definitions and particles present in solution.	Explanations for two are correct but lack some details.	All three explanations correct, including the key points in bold.
	(ii) Weak acid – particles in solution are mostly acid molecules with only a few conjugate base and hydronium ions present implying only partial dissociation. Concentrated – a large number of solute particles present in the given volume of water. (iii) Both the acid HA particles and its	Must mention at least two of: • weak acid • strong acid • concentrated • dilute • define buffer		
	conjugate base A ⁻ particle are present in similar quantities.	correctly.		
1(b)	pH not affected by dilution because [acid] [base] ratio remains the same on dilution.	Both factors correct OR One correct explanation.	Both explanations correct.	
	Buffering capacity reduced as not so many acid or base particles are available to react with added acid or base if same volume is taken.			
2(a)(i)	CaSO ₄ (s) \rightleftharpoons Ca ²⁺ (aq) + SO ₄ ²⁻ (aq) Reverse eqn also acceptable. Subscripts not required but penalise CaSO ₄ (aq).	Correct answer.		
(ii)	$K_{\rm s}$ (CaSO ₄) = [Ca ²⁺][SO ₄ ²⁻] = 2.45 × 10 ⁻⁵ S = $\sqrt{(2.45 \times 10^{-5})}$ = 4.95 × 10 ⁻³ mol L ⁻¹	Correct answer.		
2(b)	The added Cl ⁻ reduces the solubility of the NaCl. For the saturated solution: NaCl(s) \rightarrow Na ⁺ (aq) + Cl ⁻ (aq). The addition of Cl ⁻ causes the equilibrium to favour the reactants and hence a precipitate will begin to form.	Recognition of common ion.	Answer discusses shift in equilibrium.	
2(c)	$[Mg^{2+}][OH^{-}]^{2} > 7.10 \times 10^{-12}$ $0.555 \times [OH^{-}]^{2} > 7.10 \times 10^{-12}$ $[OH^{-}] > 3.58 \times 10^{-6}$ $Minimum pH = 8.55$	Correct K _s expression substituted correctly.	Correct method, but may be one error in calculation.	Answer correct.

Q	Evidence	Achievement	Achievement with Merit	Achievement with Excellence
3(a)	$pK_a(NH_4^+) = 9.2 - 9.3$	pK_a correct	$K_{\rm a}$ correct.	
	$K_{\rm a}({\rm NH_4}^+) = 10^{-9.2} = 6.3 \times 10^{-10}$	OR		
	OR 5.01×10^{-10}	$K_{\rm a}$ correctly converted from p $K_{\rm a}$.		
3(b)	At equivalence point all the NH ₃ has been converted to NH ₄ ⁺ which reacts with water to produce H_3O^+ ions and hence acidic solution. NH ₄ ⁺ + H ₂ O \rightleftharpoons NH ₃ + H ₃ O ⁺	Either, correctly balanced equation or, recognises NH ₄ ⁺ responsible for acidity.	Correctly links acidity to NH ₄ ⁺ and equation for reaction.	
3(c)	pH of 9.6 occurs after 3 mL $-4mL$ 0.200 mol L ⁻¹ HCl has been added. To 40.00 mL of 0.0500 mol L ⁻¹ NH ₃ add 3.00 mL -4.00 mL 0.2 mol L ⁻¹ HCl solution.	Correct answer.		
3(d)	$NH_4^+ + OH^- \rightarrow NH_3 + H_2O$ Accept molecular equations. $NH_4Cl + NaOH \rightarrow NH_3 + H_2O + NaCl$	Correct answer.		
3(e)	(i) At equivalence point $n(NH_3) = 0.0400 \times 0.0500$ $V = 50 \text{ mL} = 0.050 \text{ L}$ $c(NH_3) = 0.04 \text{ mol L}^{-1}$	Correct method used for either calculation.	Correct method used for both calculations.	Both answers correctly calculated.
	At equivalence point all NH ₄ ⁺ converted to NH ₃			
	$c(NH_4^+)$ at start = 0.0500 mol L ⁻¹			
	$c(NH_3)$ at finish = $0.0500 \times 40/50$			
	$= 0.0400 \text{ mol } L^{-1}$			
	(ii) $[H_3O^+]^2 = \frac{1 \times 10^{-14} \times 6.3 \times 10^{-10}}{0.04}$			
	$[H_3O^+] = 1.26 \times 10^{-11}$ pH = 10.9			

Judgement Statement

Chemistry: Describe properties of aqueous systems (90700)

Achievement	Achievement with Merit	Achievement with Excellence
SIX questions answered correctly. Minimum of $6 \times A$	SEVEN questions answered correctly, including at least THREE at Merit level. Minimum of 3 × M + 4 × A	NINE questions answered correctly, including at least THREE at Merit level and at least TWO at Excellence level. 2 × E + 3 × M + 4 × A