Assessment Schedule - 2006 ## Chemistry: Describe properties of aqueous systems (90700) ## **Evidence Statement** | Q | Evidence | Achievement | Achievement
with Merit | Achievement with Excellence | |---------|---|--|--|---| | 1(a) | (i) C (ii) A (iii) D | Two out of three correct | | | | | Reasons: (i) Strong acid – no acid molecules, HA, are present so acid must have completely dissociated in solution. Dilute – only a small number of solute particles compared to number present in B. | Evidence of understanding of relationship between definitions and particles present in solution. | Explanations for
two are correct
but lack some
details. | All three explanations correct, including the key points in bold. | | | (ii) Weak acid – particles in solution are mostly acid molecules with only a few conjugate base and hydronium ions present implying only partial dissociation. Concentrated – a large number of solute particles present in the given volume of water. (iii) Both the acid HA particles and its | Must mention at least two of: • weak acid • strong acid • concentrated • dilute • define buffer | | | | | conjugate base A ⁻ particle are present in similar quantities. | correctly. | | | | 1(b) | pH not affected by dilution because [acid] [base] ratio remains the same on dilution. | Both factors correct OR One correct explanation. | Both explanations correct. | | | | Buffering capacity reduced as not so many acid or base particles are available to react with added acid or base if same volume is taken. | | | | | 2(a)(i) | CaSO ₄ (s) \rightleftharpoons Ca ²⁺ (aq) + SO ₄ ²⁻ (aq)
Reverse eqn also acceptable. Subscripts not
required but penalise CaSO ₄ (aq). | Correct answer. | | | | (ii) | $K_{\rm s}$ (CaSO ₄) = [Ca ²⁺][SO ₄ ²⁻] = 2.45 × 10 ⁻⁵
S = $\sqrt{(2.45 \times 10^{-5})}$ = 4.95 × 10 ⁻³ mol L ⁻¹ | Correct answer. | | | | 2(b) | The added Cl ⁻ reduces the solubility of the NaCl. For the saturated solution: NaCl(s) \rightarrow Na ⁺ (aq) + Cl ⁻ (aq). The addition of Cl ⁻ causes the equilibrium to favour the reactants and hence a precipitate will begin to form. | Recognition of common ion. | Answer discusses shift in equilibrium. | | | 2(c) | $[Mg^{2+}][OH^{-}]^{2} > 7.10 \times 10^{-12}$ $0.555 \times [OH^{-}]^{2} > 7.10 \times 10^{-12}$ $[OH^{-}] > 3.58 \times 10^{-6}$ $Minimum pH = 8.55$ | Correct K _s expression substituted correctly. | Correct method,
but may be one
error in
calculation. | Answer correct. | | Q | Evidence | Achievement | Achievement
with Merit | Achievement with Excellence | |------|--|--|--|------------------------------------| | 3(a) | $pK_a(NH_4^+) = 9.2 - 9.3$ | pK_a correct | $K_{\rm a}$ correct. | | | | $K_{\rm a}({\rm NH_4}^+) = 10^{-9.2} = 6.3 \times 10^{-10}$ | OR | | | | | OR 5.01×10^{-10} | $K_{\rm a}$ correctly converted from p $K_{\rm a}$. | | | | 3(b) | At equivalence point all the NH ₃ has been converted to NH ₄ ⁺ which reacts with water to produce H_3O^+ ions and hence acidic solution. NH ₄ ⁺ + H ₂ O \rightleftharpoons NH ₃ + H ₃ O ⁺ | Either, correctly balanced equation or, recognises NH ₄ ⁺ responsible for acidity. | Correctly links acidity to NH ₄ ⁺ and equation for reaction. | | | 3(c) | pH of 9.6 occurs after 3 mL $-4mL$ 0.200 mol L ⁻¹ HCl has been added. To 40.00 mL of 0.0500 mol L ⁻¹ NH ₃ add 3.00 mL -4.00 mL 0.2 mol L ⁻¹ HCl solution. | Correct answer. | | | | 3(d) | $NH_4^+ + OH^- \rightarrow NH_3 + H_2O$
Accept molecular equations.
$NH_4Cl + NaOH \rightarrow NH_3 + H_2O + NaCl$ | Correct answer. | | | | 3(e) | (i) At equivalence point $n(NH_3) = 0.0400 \times 0.0500$ $V = 50 \text{ mL} = 0.050 \text{ L}$ $c(NH_3) = 0.04 \text{ mol L}^{-1}$ | Correct method used for either calculation. | Correct method used for both calculations. | Both answers correctly calculated. | | | At equivalence point all NH ₄ ⁺ converted to NH ₃ | | | | | | $c(NH_4^+)$ at start = 0.0500 mol L ⁻¹ | | | | | | $c(NH_3)$ at finish = $0.0500 \times 40/50$ | | | | | | $= 0.0400 \text{ mol } L^{-1}$ | | | | | | (ii) $[H_3O^+]^2 = \frac{1 \times 10^{-14} \times 6.3 \times 10^{-10}}{0.04}$ | | | | | | $[H_3O^+] = 1.26 \times 10^{-11}$
pH = 10.9 | | | | ## **Judgement Statement** Chemistry: Describe properties of aqueous systems (90700) | Achievement | Achievement with Merit | Achievement with Excellence | |---|--|---| | SIX questions answered correctly. Minimum of $6 \times A$ | SEVEN questions answered correctly, including at least THREE at Merit level. Minimum of 3 × M + 4 × A | NINE questions answered correctly, including at least THREE at Merit level and at least TWO at Excellence level. 2 × E + 3 × M + 4 × A |