For Supervisor's use only

2

90459

Level 2 Biology, 2004

90459 Describe concepts and processes that relate to genetic variation and change

Credits: Three 2.00 pm Thursday 25 November 2004

Check that the National Student Number (NSN) on your admission slip is the same as the number at the top of this page.

You should answer ALL the questions in this booklet.

If you need more space for any answer, use the pages provided at the back of this booklet and clearly number the question.

Check that this booklet has pages 2–8 in the correct order and that none of these pages is blank.

YOU MUST HAND THIS BOOKLET TO THE SUPERVISOR AT THE END OF THE EXAMINATION.

Achievement Criteria	For Assessor's use only	
Achievement	Achievement with Merit	Achievement with Excellence
Describe biological concepts and processes that relate to genetic variation and change.	Explain biological concepts and processes that relate to genetic variation and change.	Discuss biological concepts and processes that relate to genetic variation and change.
	Overall Level of Performance	

You are advised to spend 40 minutes answering the guestions in this booklet.

Assessor's use only

QUESTION ONE: FRUIT FLIES

In 1933 Thomas Morgan received a Nobel Prize for his studies of the genetics of the fruit fly *Drosophila melanogaster*. These flies are used because they are easy to control in the laboratory and they have a short life cycle, meaning results can be obtained quickly.

At the start, Morgan bred red-eyed fruit flies over a period of more than two years and the results were always red-eyed offspring. But one day he noticed that a white-eyed individual was produced.

(a)	Describe how this white-eyed individual arose.					
Morg	gan and his colleagues did some investigations on the crossing over of chromosomes and					

Morgan and his colleagues did some investigations on the **crossing over** of chromosomes and **recombination** of genes in the fruit flies. A fly with normal straight wings and a grey body was crossed with a fly with vestigial (short and wrinkled) wings and a black-coloured body.

normal wing and grey body fly

vestigal wing and black body fly

Vestigial wing and grey body

11

The offspring all had normal wings with grey bodies.

Normal wing and grev body

The usual ratio for independently assorting genes in a cross between an individual that is heterozygous for both genes with another individual that is homozygous recessive for both genes, would be 1:1:1:1.

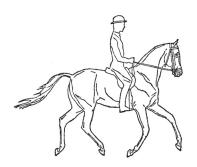
When one of these F_1 offspring was then crossed with a fly homozygous for the recessive alleles, the following numbers of offspring were obtained:

90

	3 - 3 - 3 - 3 - 3 - 3		3 - 3 - 3 - 7	
	Normal wing and black body	9	Vestigial wing and black body	86
(b)	Explain this result.			

)	Describe the process of crossing over between two homologous chromosomes. Clearly labelled diagrams may be used.	Assesso use on
)	Explain the importance that crossing over between homologous chromosomes has for a population.	

QUESTION TWO: MUTATIONS AND GENE POOL


Assessor's use only

Mutations affect gene pools and are important for evolution.. Define mutation and gene pool. (a) **Mutation:** Gene pool: (b) **Discuss** how a mutation could affect the **population** over a period of time.

QUESTION THREE: HORSE BREEDING

Assessor's use only

In horses, black coat colour is influenced by the dominant allele (\mathbf{B}) and chestnut coat colour by the recessive allele (\mathbf{b}). Trotting gait is due to a dominant gene (\mathbf{T}), pacing gait to the recessive allele (\mathbf{t}).

Horse trotting

Horse pacing

A horse trainer wanted to find the **genotype** of a black trotter she had just bought.

a)	Give the genotype and phenotype of the horse she would use to find out the genotype of a black trotter. Explain your answer.

Assessor's use only

			Pos	ssible sperr	n
		1		•	
Possible					
eggs	-				
					I
Phenotype ratio:					
7.					
	en breeding ch	estnuts toget	her, she would	d not get any	black foals, but w
Explain why, whe	reae cha cou	ld aet chestn			
Explain why, whe	rises, sile cou	ia get enestit	ut foals.		
Explain why, whe	orses, sile cou	ia get enestin	ut foals.		
Explain why, who	Jises, sile cou	The get onesting	ut foals.		
Explain why, whe	orses, sile cou	la get onestin	ut foals.		
Explain why, who	orses, sile cou	ia get eneetii	ut foals.		
Explain why, whe	orses, sile cou	id get eneeti	ut foals.		
Explain why, who	orses, sile cou	id get eneetin	ut foals.		
Explain why, whe	orses, sile cou	na get eneetin	ut foals.		
Explain why, whe	orses, sile cou	id get eneeti	ut foals.		
Explain why, whe	orses, sile cou	na get enceun	ut foals.		
Explain why, whe	orses, sile cou	id get eneetin	ut foals.		

QUI	ES	OIT	N FC	UR: H	EDO	3EHO	GS							
			_				_					_		

Hedgehogs found throughout New Zealand are the descendants of a small number of animals introduced from England in the 1870s. Discuss why the present gene pool of the New Zealand hedgehog population is unlikely to be the same as that of the present English population.

Assessor's use only

Extra paper for continuation of answers if required. Clearly number the question.

Asse	SSC	r':
use	on	v

Question number	